Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (4): 965-975.doi: 10.23919/JSEE.2024.000020
• SYSTEMS ENGINEERING • Previous Articles
Haipeng JIANG1(), Guoqing WU2,3(), Mengdan SUN2,3(), Feng LI2(), Yunfei SUN4(), Wei FANG1,*()
Received:
2022-12-21
Online:
2024-08-18
Published:
2024-08-06
Contact:
Wei FANG
E-mail:6201924093@stu.jiangnan.edu.cn;www.lotems702@cssrc.com.cn;sunmengdan702@cssrc.com.cn;lifeng@cssrc.com.cn;201840049@smail.nju.edu.cn;fangwei@jiangnan.edu.cn
About author:
Supported by:
Haipeng JIANG, Guoqing WU, Mengdan SUN, Feng LI, Yunfei SUN, Wei FANG. PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets[J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 965-975.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 4
Performance comparison on running speed"
Dataset | Minimum utility | PHUI-GA/s | HUIM-IGA/s | Accelerate ratio/% | HUIF-PSO/s | Accelerate ratio/% | PHUI-Miner/s | Accelerate ratio/% |
Chess | 60 W | 0.32 | 5.59 | 17.46 | 12.10 | 37.81 | 8.70 | 27.19 |
59 W | 0.38 | 10.40 | 27.36 | 18.90 | 49.73 | 9.68 | 25.47 | |
59 W | 0.56 | 17.80 | 31.78 | 28.80 | 51.42 | 9.82 | 17.54 | |
57 W | 0.79 | 27.56 | 34.88 | 57 | 72.15 | 10.50 | 13.29 | |
56 W | 1.07 | 41.20 | 38.50 | 102 | 95.32 | 11.10 | 10.37 | |
Mushroom | 46 W | 0.52 | 3.98 | 7.65 | 8.20 | 15.76 | 6.80 | 13.08 |
45 W | 0.70 | 4.2 | 6 | 10.70 | 15.28 | 7.10 | 10.14 | |
44 W | 1.03 | 4.8 | 4.66 | 16.44 | 15.96 | 7.20 | 6.99 | |
43 W | 1.53 | 7.7 | 5.03 | 21 | 13.72 | 7.35 | 4.80 | |
42 W | 2.58 | 13.6 | 5.27 | 28 | 10.85 | 7.50 | 2.91 | |
Accident_10% | 250 W | 1.47 | 30 | 20.41 | 31 | 21.08 | 20.95 | 14.25 |
240 W | 2.17 | 46 | 21.19 | 62 | 28.57 | 21.74 | 10.02 | |
230 W | 3.10 | 72 | 23.22 | 214 | 69.03 | 23.50 | 7.58 | |
220 W | 3.75 | 90 | 24 | 300 | 80 | 26.60 | 7.09 | |
210 W | 5.0 | 149 | 29.8 | 477 | 95.4 | 27.50 | 5.50 | |
Connect | 3.36 | 216 | 64.28 | 518 | 154.16 | 123.00 | 36.61 | |
4.10 | 246 | 60 | 572 | 139.51 | 135.00 | 32.93 | ||
5.00 | 410 | 82 | 965 | 193 | 152.00 | 30.40 | ||
6.40 | 480 | 75 | 179.37 | 162.00 | 25.31 | |||
8.31 | 632 | 76.05 | 188.20 | 198.00 | 26.40 |
1 |
SINGH K, KUMAR R, BISWAS B High average-utility itemsets mining: a survey. Applied Intelligence, 2022, 52 (4): 3901- 3938.
doi: 10.1007/s10489-021-02611-z |
2 |
JANGRA S, TOSHNIWAL D Efficient algorithms for victim item selection in privacy-preserving utility mining. Future Generation Computer Systems, 2022, 128, 219- 234.
doi: 10.1016/j.future.2021.10.008 |
3 |
LIN C W, HONG T P, LU W H An effective tree structure for mining high utility itemsets. Expert Systems with Applications, 2011, 38 (6): 7419- 7424.
doi: 10.1016/j.eswa.2010.12.082 |
4 |
KHEIROLLAHI H, CHAHARDOWLI M, SIMJOO M A new method of well clustering and association rule mining. Journal of Petroleum Science and Engineering, 2022, 214, 110479.
doi: 10.1016/j.petrol.2022.110479 |
5 |
BICER M, INDICTOR D, YANG R, et al Efficient implementations for UWEP incremental frequent itemset mining algorithm. International Journal of Applied Logistics, 2021, 11 (1): 18- 37.
doi: 10.4018/IJAL.2021010102 |
6 |
WU P, NIU X Z, FOURNIER-VIGER P, et al UBP-Miner: an efficient bit based high utility itemset mining algorithm. Knowledge-Based Systems, 2022, 248, 108865.
doi: 10.1016/j.knosys.2022.108865 |
7 | FOUAD M A, HUSSEIN W, RADY S, et al An efficient approach for mining reliable high utility patterns. IEEE Access, 2022, 10, 1419- 1431. |
8 | LEE D, NAM K, HAN I, et al From free to fee: monetizing digital content through expected utility-based recommender systems. Information & Management, 2022, 59 (6): 103681. |
9 | SETHI K K, RAMESH D, RATHORE A, et al. HUIM-SMP: high utility itemset mining based stock market analogy. Proc. of the 10th International Conference on Computing, Communication and Networking Technologies, 2019. DOI: 10.1109/ICCCNT45670.2019.8944752. |
10 |
KRISHNA G J, RAVI V High utility itemset mining using binary differential evolution: an application to customer segmentation. Expert Systems with Applications, 2021, 181, 115122.
doi: 10.1016/j.eswa.2021.115122 |
11 | NOUIOUA M, FOURNIER-VIGER P, GAN W S, et al. TKQ: top-K quantitative high utility itemset mining. Proc. of the Advanced Data Mining and Applications, 2022: 16−28. |
12 |
LE B, TRUONG T, DUONG H, et al H-FHAUI: hiding frequent high average utility itemsets. Information Sciences, 2022, 611, 408- 431.
doi: 10.1016/j.ins.2022.07.027 |
13 |
HUYNH U, LE B, DINH D T, et al Multi-core parallel algorithms for hiding high-utility sequential patterns. Knowledge-Based Systems, 2022, 237, 107793.
doi: 10.1016/j.knosys.2021.107793 |
14 |
LIN J C W, GAN W, FOURNIER-VIGER P, et al High utility-itemset mining and privacy-preserving utility mining. Perspectives in Science, 2016, 7, 74- 80.
doi: 10.1016/j.pisc.2015.11.013 |
15 | LIU Y W, WANG L, FENG L, et al. Mining high utility itemsets based on pattern growth without candidate generation. Mathematics, 2021, 9(1): 35. |
16 | AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. on Knowledge and Data Engineering, 2009, 21: 1708−1721. |
17 |
DUONG Q H, FOURNIER-VIGER P, RAMAMPIARO H, et al Efficint high utility itemset mining using buffered utility-lists. Applied Intelligence, 2018, 48 (7): 1859- 1877.
doi: 10.1007/s10489-017-1057-2 |
18 | NAWAZ M S, FOURNIER-VIGER P, YUN U, et al Mining high utility itemsets with hill climbing and simulated annealing. ACM Transactions on Management Information System, 2021, 13 (1): 1- 22. |
19 |
CHEN Y, AN A J Approximate parallel high utility itemset mining. Big Data Research, 2016, 6, 26- 42.
doi: 10.1016/j.bdr.2016.07.001 |
20 |
SETHI K K, RAMESH D, EDLA D R P-FHM+: parallel high utility itemset mining algorithm for big data processing. Procedia Computer Science, 2018, 132, 918- 927.
doi: 10.1016/j.procs.2018.05.107 |
21 | LIU J Q, ZHAO R, YANG X C, et al. Efficient parallel algorithm for mining high utility patterns based on spark. Proc. of the IEEE Fourth International Conference on Data Science in Cyberspace, 2019: 367−372. |
22 |
KANNIMUTHU S, PREMALATHA K Discovery of high utility itemsets using genetic algorithm with ranked mutation. Applied Artificial Intelligence, 2014, 28 (4): 337- 359.
doi: 10.1080/08839514.2014.891839 |
23 |
LIN J C-W, YANG L, FOURNIER-VIGER P, et al Mining high-utility itemsets based on particle swarm optimization. Engineering Applications of Artificial Intelligence, 2016, 55, 320- 330.
doi: 10.1016/j.engappai.2016.07.006 |
24 |
LIN J C W, YANG L, FOURNIER-VIGER P, et al A binary PSO approach to mine high-utility itemsets. Soft Computing, 2017, 21 (17): 5103- 5121.
doi: 10.1007/s00500-016-2106-1 |
25 | SONG W, HUANG C M. Discovering high utility itemsets based on the artificial bee colony algorithm. Proc. of the Advances in Knowledge Discovery and Data Mining, 2018: 3−14. |
26 | HERAGUEMI K E, KAMEL N, DRIAS H Association rule mining based on bat algorithm. Journal of Computational and Theoretical Nanoscience, 2015, 12 (7): 1195- 1200. |
27 | SONG W, NAN J K. Mining high utility itemsets using ant colony optimization. Proc. of the Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 2020: 98−107. |
28 | SONG W, LI J Y, HUANG C W. Artificial fish swarm algorithm for mining high utility itemsets. Proc. of the Advances in Swarm Intelligence, 2021: 407−419. |
29 |
SONG W, HUANG C M Mining high utility itemsets using bio-inspired algorithms: a diverse optimal value framework. IEEE Access, 2018, 6, 19568- 19582.
doi: 10.1109/ACCESS.2018.2819162 |
30 |
ZHANG Q, FANG W, SUN J, et al Improved genetic algorithm for high-utility itemset mining. IEEE Access, 2019, 7, 176799- 176813.
doi: 10.1109/ACCESS.2019.2958150 |
31 | ZIDA S, FOURNIER-VIGER P, LIN J C W, et al. EFIM: a highly efficient algorithm for high-utility itemset mining. Proc. of the Advances in Artificial Intelligence and Soft Computing, 2015: 530−546. |
32 | SONG W, LI J Y. Discovering high utility itemsets using set-based particle swarm optimization. Proc. of the International Conference on Advanced Data Mining and Applications, 2022: 38−53. |
33 |
DJENOURI Y, DJENOURI D, BELHADI A, et al Exploiting GPU and cluster parallelism in single scan frequent itemset mining. Information Sciences, 2019, 496, 363- 377.
doi: 10.1016/j.ins.2018.07.020 |
34 |
DJENOURI Y, DJENOURI D, BELHADI A, et al Exploiting GPU parallelism in improving bees swarm optimization for mining big transactional databases. Information Sciences, 2019, 496, 326- 342.
doi: 10.1016/j.ins.2018.06.060 |
35 |
DJENOURI Y, BENDJOUDI A, MEHI M, et al GPU-based bees swarm optimization for association rules mining. The Journal of Supercomputing, 2015, 71 (4): 1318- 1344.
doi: 10.1007/s11227-014-1366-8 |
36 |
SAFARI M, HUISMAN M Formal verification of parallel prefix sum and stream compaction algorithms in CUDA. Theoretical Computer Science, 2022, 912, 81- 98.
doi: 10.1016/j.tcs.2022.02.027 |
[1] | Hui CAO, Fuhai DUAN, Yu’nan DUAN. Reliability-based selective maintenance for redundant systems with dependent performance characteristics of components [J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 804-814. |
[2] | Jianwei SUN, Chao WANG, Qingzhan SHI, Wenbo REN, Zekun YAO, Naichang YUAN. Intelligent optimization methods of phase-modulation waveform [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 916-923. |
[3] | Yongbin YU, Chenyu YANG, Quanxin DENG, Tashi NYIMA, Shouyi LIANG, Chen ZHOU. Memristive network-based genetic algorithm and its application to image edge detection [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1062-1070. |
[4] | Amir ZAHEDI, Bijan ABBASI ARAND. GA-based approach to phase compensation of large phased array antennas [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 723-730. |
[5] | Jun Li, Hao Chen, Zhinong Zhong, Ning Jing, and Jiangjiang Wu. Method for electromagnetic detection satellites scheduling based on genetic algorithm with alterable penalty coefficient [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 822-832. |
[6] | Guo Wei, Xudong Yu, and Xingwu Long. Novel approach for identifying Z-axis drift of RLG based on GA-SVR model [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 115-121. |
[7] | Bin Suo, Yongsheng Cheng, Chao Zeng, and Jun Li. Computational intelligence approach for uncertainty quantification using evidence theory [J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 250-260. |
[8] | Hao Yuan, Dan Song, Qiangfeng Zhou, and Huaping Xu. Worst-case tolerance analysis on array antenna based on chaos-genetic algorithm [J]. Journal of Systems Engineering and Electronics, 2012, 23(6): 824-830. |
[9] | Zhongzhao Zhang, Zhun Ye, and Weilin Jiang. Optimal antenna placement in distributed antenna systems [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 467-472. |
[10] | Qunming Wang, Liguo Wang, and Danfeng Liu. Integration of spatial attractions between and within pixels for sub-pixel mapping [J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 293-303. |
[11] | Tianran Zhou, Huagang Xiong, and Zhen Zhang. Hierarchical resource allocation for integrated modular avionics systems [J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 780-787. |
[12] | Kezong Tang, Jingyu Yang, Haiyan Chen, and Shang Gao. Improved genetic algorithm for nonlinear programming problems [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 540-546. |
[13] | Tao Haihong, Liao Guisheng & Yu Jiang. Space-borne antenna adaptive anti-jamming method based on gradient-genetic algorithm [J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 469-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||