1 |
ZHU Z, LEI Y L, ZHU Y F Model-driven combat effectiveness simulation systems engineering. Defense Science Journal, 2020, 70 (1): 54- 59.
doi: 10.14429/dsj.70.12777
|
2 |
ERNEST N, CARROLL D, SCHUMACHER C, et al Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicles in simulated air combat missions. Journal of Defense Management, 2016, 6 (1): 144- 151.
|
3 |
ERNEST N, COHEN K, KIVELEVITCH E, et al Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles. Unmanned Systems, 2015, 3 (3): 185- 204.
doi: 10.1142/S2301385015500120
|
4 |
THIERRY A S, BASTIEN P, VITTORI E, et al. “Smart entity” – how to build DEVS models from large amount of data and small amount of knowledge? Proc. of the Simulation Tools and Techniques, 2019: 615−626.
|
5 |
GILL S S, XU M X, OTTAVIANI C, et al AI for next generation computing: emerging trends and future directions. Internet Things Journal, 2022, 19, 100514.
doi: 10.1016/j.iot.2022.100514
|
6 |
YAO J. Study on tactics exploration method for equipment effectiveness simulation. Changsha: National University of Defense Technology, 2017. (in Chinese)
|
7 |
ZHU Z, LEI Y L, SARJOUGHIAN H, et al UML-based combat effectiveness simulation system modeling within MDE. Journal of Systems Engineering and Electronics, 2018, 29 (6): 1180- 1196.
doi: 10.21629/JSEE.2018.06.07
|
8 |
ERNEST N. Genetic fuzzy trees for intelligent control of unmanned combat aerial vehicles. Cincinnati: University of Cincinnati, 2015.
|
9 |
ZADEH L A Fuzzy sets. Information and Control, 1965, 8 (3): 338- 353.
doi: 10.1016/S0019-9958(65)90241-X
|
10 |
WANG X, WANG W J, SONG K P, et al UAV air combat decision based on evolutionary expert system tree. Ordnance Industry Automation, 2019, 38 (10): 42- 47.
|
11 |
SATHYAN A, COHEN K, MA O Comparison between genetic fuzzy methodology and q-learning for collaborative control design. International Journal of Artificial Intelligence and Applications, 2019, 10 (2): 1- 15.
doi: 10.5121/ijaia.2019.10201
|
12 |
FELDKAMP N, BERGMANN S, STRASSBURGER S Knowledge discovery in simulation data. ACM Transactions on Modeling and Computer Simulation, 2020, 30 (4): 1607- 1618.
|
13 |
SANCHEZ S M Data farming: methods for the present, opportunities for the future. ACM Transactions on Modeling and Computer Simulation, 2020, 30 (4): 1- 30.
|
14 |
KIM B S, KANG B G, CHOI S H, et al Data modeling versus simulation modeling in the big data era: case study of a greenhouse control system. Simulation, 2017, 93 (7): 579- 594.
doi: 10.1177/0037549717692866
|
15 |
QUINLAN J R Introduction of decision trees. Machine Learning, 1986, 1, 81- 106.
|
16 |
ZHOU Z H. Machine learning. Beijing: Tsinghua University Press, 2016. (in Chinese)
|
17 |
FISHWICK P A Simulation model design and execution: building digital worlds. IIE Transactions, 1996, 28 (9): 778- 780.
doi: 10.1080/15458830.1996.11770729
|
18 |
ABDELMEGID M A, SULLIVAN M O, GONZALEZ V A, et al A case study on the use of a conceptual modeling framework for construction simulation. Simulation, 2022, 98 (5): 433- 460.
doi: 10.1177/00375497211056087
|
19 |
LEI Y L, ZHU Z, LI Q, et al. WESS: a generic combat effectiveness simulation system. Proc. of the Asia Simulation, 2017: 272−283.
|