Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (4): 855-864.doi: 10.23919/JSEE.2024.000072
• EMERGING DEVELOPMENTS ON SPACE-TEERRESTRIAL INTEGRATED NETWORK AND RELATED KEY TECHNOLOGIES • Previous Articles
Sai HAN1,*(), Ao LI1(), Dongyue ZHANG1(), Bin ZHU1(), Zelin WANG1(), Guangquan WANG1(), Jie MIAO2(), Hongbing MA2()
Received:
2023-04-10
Online:
2024-08-18
Published:
2024-08-06
Contact:
Sai HAN
E-mail:hans29@chinaunicom.cn;lia12@chinaunicom.cn;zhangdy131@chinaunicom.cn;zhubin15@chinaunicom.cn;wangzl172@chinaunicom.cn;wanggq122@chinaunicom.cn;miaojie9@chinaunicom.cn;mahb@chinaunicom.cn
About author:
Supported by:
Sai HAN, Ao LI, Dongyue ZHANG, Bin ZHU, Zelin WANG, Guangquan WANG, Jie MIAO, Hongbing MA. Early warning of core network capacity in space-terrestrial integrated networks[J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 855-864.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Results of correlation analysis"
Feature | AMF/Ten thousand users | UDM/Ten thousand users | SMF/ Ten thousands sessions |
NU/Ten thousand users | |||
NT/Ten thousand users | |||
Holiday | − | − | − |
Workday | − | − | − |
Weekend | − | − |
1 | TANG F L. Dynamically adaptive cooperation transmission among satellite-ground integrated networks. Proc. of the Conference on Computer Communications, 2020: 1559−1568. |
2 |
DING H X, ZHU S C, MENG S C L, et al Matching-based resource allocation for satellite-ground network. Sensors, 2022, 22 (21): 8436- 8447.
doi: 10.3390/s22218436 |
3 |
YANG L, MA W D, WEI D B Offloading strategy in satellite-ground network. Journal of Physics: Conference Series, 2022, 2290 (1): 012118- 012125.
doi: 10.1088/1742-6596/2290/1/012118 |
4 | LIU Y, DING S H, HUANG J X, et al. Vertical handover of satellite-ground fusion network based on time and location under early access strategy. Proc. of the International Conference on Smart Computing and Communication, 2022: 384−393. |
5 |
ZHAO M, CHEN C, LIU L, et al Orbital collaborative learning in 6G space-air-ground integrated networks. Neurocomputing, 2022, 497, 94- 109.
doi: 10.1016/j.neucom.2022.04.098 |
6 | LIU Y, PENG M G Satellite-ground fusion intelligent networking: vision and key technologies. Journal of Beijing University of Posts and Telecommunications, 2021, 44 (6): 1- 12. |
7 |
GUTIERREZ-ESTEVEZ D M, GRAMAGLIA M, DOMENICO A D, et al Artificial intelligence for elastic management and orchestration of 5G networks. IEEE Wireless Communications, 2019, 26 (5): 134- 141.
doi: 10.1109/MWC.2019.1800498 |
8 |
HAN S, MA H B, ZHANG P, et al Improved MPEG-4 high-efficiency AAC with variable-length soft-decision decoding of the quantized spectral coefficients. China Communications, 2019, 16 (10): 65- 82.
doi: 10.23919/JCC.2019.10.005 |
9 | CHEN M Z, WEI X, GAO Y, et al. Deep-broad learning system for traffic flow prediction toward 5G cellular wireless network. Proc. of International Wireless Communications and Mobile Computing, 2020: 940−945. |
10 | HAN S, WANG Z L, WANG G Q, et al. Automatic association of cross-domain network topology. Proc. of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 2022: 1173−1178. |
11 |
NIE L S, NING Z L, OBAIDAT M S, et al A reinforcement learning-based network traffic prediction mechanism in intelligent internet of things. IEEE Trans. on Industrial Informatics, 2021, 17 (3): 2169- 2180.
doi: 10.1109/TII.2020.3004232 |
12 | SELVAMANJU E, SHALINI V B. Machine learning based mobile data traffic prediction in 5G cellular networks. Proc. of the 5th International Conference on Electronics, Communication and Aerospace Technology, 2021: 1318−1324. |
13 | HAN S, MA H B, CHEN D, et al. Streaming video optimization in mobile communications. Proc. of the IEEE/CIC International Conference on Communications in China, 2018: 495−499. |
14 | BARADIE S, REDDY R, LIPPS C, et al. Managing the fifth generation (5G) wireless mobile communication: a machine learning approach for network traffic prediction. Proc. of the IEEE 26th International Symposium on Mobile Communication Technologies and Applications, 2022. https://ieeexplore.ieee.org/abstract/document/9861870. |
15 |
ALAWE I, KSENTINI A, HADJADJ-AOUL Y, et al Improving traffic forecasting for 5G core network scalability: a machine learning approach. IEEE Network, 2018, 32 (6): 42- 49.
doi: 10.1109/MNET.2018.1800104 |
16 | DENG D S. Research on Anomaly Detection method based on DBSCAN clustering algorithm. Proc. of the 5th International Conference on Information Science, Computer Technology and Transportation, 2020: 439−442. |
17 | HIRAI S, BABA H, MATSUMOTO M, et al. Machine learning based performance prediction for cloud-native 5G mobile core network. Proc. of the IEEE Wireless Communications and Networking Conference, 2022: 1230−1235. |
18 | CHAKRABORTY P, CORICI M, MAGEDANZ T. A comparative study for time series forecasting within software 5G networks. Prof. of the 14th International Conference on Signal Processing and Communication Systems, 2020. DOI: 10.1109/ICSPCS50536.2020.9310033. |
19 | CHAKRABORTY P, CORICI M, MAGEDANZ T. System failure prediction within software 5G core networks using time series forecasting. Proc. of the IEEE International Conference on Communications Workshops, 2021. DOI: 10.1109/ICCWorkshops50388.2021.9473530. |
20 | KURANAGE M P J, NUAYMI L, BOUABDALLAH A, et al. Deep learning based resource forecasting for 5G core network scaling in kubernetes environment. Proc. of the 8th International Conference on Network Softwarization, 2022: 139−144. |
21 |
NGUYEN H T, DO T V, ROTTER C Scaling UPF instances in 5G/6G core with deep reinforcement learning. IEEE Access, 2021, 9, 165892- 165906.
doi: 10.1109/ACCESS.2021.3135315 |
22 |
YAO H P, WANG L Y, WANG X D, et al The space-terrestrial integrated network: an overview. IEEE Communications Magazine, 2018, 56 (9): 178- 185.
doi: 10.1109/MCOM.2018.1700038 |
23 | CHEN L, TANG F L, LI Z T, et al. Time-varying resource graph based resource model for space-terrestrial integrated networks. Proc. of the Conference on Computer Communications, 2021. DOI: 10.1109/INFOCOM42981.2021.9488855. |
24 |
ZHANG N, ZHANG S, YANG P, et al Software defined space-air-ground integrated vehicular networks: challenges and solutions. IEEE Communications Magazine, 2017, 55 (7): 101- 109.
doi: 10.1109/MCOM.2017.1601156 |
25 |
LIU J J, SHI Y P, FADLULLAH Z M, et al Space-air-ground integrated network: a survey. IEEE Communications Surveys and Tutorials, 2018, 20 (4): 2714- 2741.
doi: 10.1109/COMST.2018.2841996 |
26 |
ARANI A H, HU P, ZHU Y Y Fairness-aware link optimization for space-terrestrial integrated networks: a reinforcement learning framework. IEEE Access, 2021, 9, 77624- 77636.
doi: 10.1109/ACCESS.2021.3082862 |
27 |
WEI L H, SHUAI J C, LIU Y, et al Service customized space-air-ground integrated network for immersive media: architecture, key technologies, and prospects. China Communications, 2022, 19 (1): 1- 13.
doi: 10.23919/JCC.2022.9693488 |
28 |
WANG X Y, SUN T, DUAN X D, et al Holistic service-based architecture for space-air-ground integrated network for 5G-advanced and beyond. China Communications, 2022, 19 (1): 14- 28.
doi: 10.23919/JCC.2022.01.002 |
29 | ZHOU Z H, MA J X, WAN G N, et al. Research on 6G satellite-terrestrial integrated network architecture. Proc. of the 7th International Conference on Cyber Security and Information Engineering, 2022: 1057−1062. |
30 | DONG G, PAN L, ZHANG Y, et al. Air-space-ground integrated information network: technology, development and prospect. Proc. of the 8th International Conference on Signal and Information Processing, Networking and Computers, 2022: 883−891. |
31 | SHENG J, CAI X Q, LI Q Y, et al Space-air-ground integrated network development and applications in high-speed railways: a survey. IEEE Trans. on Intelligent Transportation Systems, 2021, 23 (8): 10066- 10085. |
32 | PEI Y S, MIAO S Y, LI F C. Challenges and opportunities for terrestrial network operators in the air-space-ground integrated network. Proc. of the International Conference on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking, 2020: 1400−1404. |
33 | CHI L H, LIN C W, LIN W H, et al. Research on development of space-ground integration information network. Proc. of the International Conference on Urban Engineering and Management Science, 2020: 29−32. |
34 | PEI Y, ZHANG Z, WANG T Development vision and challenge of air-space-ground integrated network. Designing Techniques of Posts and Telecommunications, 2020, 63 (4): 15- 20. |
35 |
TAYLOR S J, LETHAM B Forecasting at scale. The American Statistician, 2018, 72 (1): 37- 45.
doi: 10.1080/00031305.2017.1380080 |
36 | CHAKRABORTY P, CORICI M, MAGEDANZ T. A comparative study for time series forecasting within software 5G networks. Proc. of the 14th International Conference on Signal Processing and Communication Systems, 2020. DOI: 10.1109/ICSPCS50536.2020.9310033. |
37 | RANGAPURAM S S, SEEGER M W, GASTHAUS J, et al. Deep state space models for time series forecasting. Proc. of the 32nd Conference on Neural Information Processing Systems, 2018: 7796–7805. |
38 | LIU Z X, FENG Y, YIN Y N, et al. DeepState: selecting test suites to enhance the robustness of recurrent neural networks. Proc. of the 44th International Conference on Software Engineering, 2022: 598−609. |
39 |
ZHANG D B A coefficient of determination for generalized linear models. The American Statistician, 2017, 71 (4): 310- 316.
doi: 10.1080/00031305.2016.1256839 |
40 | ALMOHAMMEDI A M, ZERGUINE A, DERICHE M, et al. Artificial bee colony DLMS beyond mean square error boundary in ad-hoc WSN. Proc. of the 14th International Conference on Computational Intelligence and Communication Networks, 2022: 572−576. |
41 | YAMAKI S, SEKI S, SUGITA N, et al. Performance evaluation of cross correlation functions based on correlation filters. Proc. of the 20th International Symposium on Communications and Information Technologies, 2021: 145−149. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||