Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (4): 842-854.doi: 10.23919/JSEE.2024.000071
• EMERGING DEVELOPMENTS ON SPACE-TEERRESTRIAL INTEGRATED NETWORK AND RELATED KEY TECHNOLOGIES • Previous Articles
Wei LIU1,2,*(), Yifeng JIN1,2(), Lei ZHANG1,2(), Zihe GAO1,2(), Ying TAO1,2()
Received:
2023-04-06
Online:
2024-08-18
Published:
2024-08-06
Contact:
Wei LIU
E-mail:emcf431@163.com;jyfcast@outlook.com;leizhang200@163.com;biblejiayou@163.com;tao.ying@126.com
About author:
Supported by:
Wei LIU, Yifeng JIN, Lei ZHANG, Zihe GAO, Ying TAO. Dynamic access task scheduling of LEO constellation based on space-based distributed computing[J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 842-854.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | JING F, LI W, ZHAO W H. Research on access capability of laser link GEO data relay satellite system based on Erlang relay theory. Proc. of the International Conference on Robots & Intelligent System, 2020: 335−337. |
2 |
DENG C L, GUO W, HU W S, et al Algorithm for the light-path reservation provisioning of data relay services in a GEO network. Journal of Optical Communications and Networking, 2017, 9 (8): 658- 668.
doi: 10.1364/JOCN.9.000658 |
3 |
WU B B, FANG F, FU S Improving the system performance in terrestrial-satellite relay networks by configuring aerial relay. IEEE Trans. on Vehicular Technology, 2021, 70 (12): 13139- 13148.
doi: 10.1109/TVT.2021.3117557 |
4 | TASNEEM D, GUNES K K, HALIM Y, et al Location management in Internet protocol-based future LEO satellite networks: a review. IEEE Open Journal of the Communications Society, 2022, 3 (1): 1035- 1062. |
5 |
LI B, FEI Z S, ZHOU C Q, et al Physical-layer security in space information networks: a survey. IEEE Internet of Things Journal, 2020, 7 (1): 33- 52.
doi: 10.1109/JIOT.2019.2943900 |
6 | HAN W, WANG B S, FENG Z Q, et al. Grimm: a locator/identifier split-based mobility management architecture for LEO satellite network. Proc. of the 6th International Conference on Instrumentation & Measurement, Computer, Communication and Control, 2016: 605−608. |
7 | CHEN Q, MA Z X, LAN B, et al. Multi-satellite tracking for the LEO satellite communication network. Proc. of the IEEE International Conference on Communications, 2022: 3082−3087. |
8 |
CHEN Q, XU Y Y, SONG C Y, et al Adaptive tracking for beam alignment between ship-borne digital phased-array antenna and LEO satellite. Journal of Communications and Information Networks, 2019, 4 (3): 60- 70.
doi: 10.23919/JCIN.2019.8917886 |
9 |
SEONG-MO M, SOHYEUN Y, IN-BOK Y, et al Phased array shaped-beam satellite antenna with boosted-beam control. IEEE Trans. on Antennas and Propagation, 2019, 67 (12): 7633- 7636.
doi: 10.1109/TAP.2019.2930129 |
10 | BAPTISTE P, NELSON J, MAXIME R, et al. Multi-beam antennas for very high throughput satellites in europe: technologies and trends. Proc. of the 11th European Conference on Antennas and Propagation, 2017: 2413−2417. |
11 | LIU X J, XU K M, WU F Y, et al. A beam-dominating frequency resource allocation and scheduling scheme for multi-beam satellite system. Proc. of the IEEE International Conference on Power Electronics, Computer Applications, 2021: 532−535. |
12 |
LIN Z Y, NI Z Y, KUANG L L, et al Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems. IEEE Trans. on Vehicular Technology, 2022, 71 (4): 3917- 3930.
doi: 10.1109/TVT.2022.3145848 |
13 |
DENG B Y, JIANG C X, WANG J C, et al Beam scheduling with various mission demands in data relay satellite systems. Journal of Communications and Information Networks, 2021, 6 (4): 396- 410.
doi: 10.23919/JCIN.2021.9663104 |
14 |
WANG L, JIANG C X, KUANG L L, et al High-efficient resource allocation in data relay satellite systems with users behavior coordination. IEEE Trans. on Vehicular Technology, 2018, 67 (12): 12072- 12085.
doi: 10.1109/TVT.2018.2872085 |
15 |
DENG B Y, JIANG C X, KUANG L L, et al Two-phase task scheduling in data relay satellite systems. IEEE Trans. on Vehicular Technology, 2018, 67 (2): 1782- 1793.
doi: 10.1109/TVT.2017.2763150 |
16 | SHI D Y, LIU F, ZHANG T. Resource allocation in beam hopping communication satellite system. Proc. of the International Wireless Communications and Mobile Computing, 2020: 280−284. |
17 | ZHANG T, ZHANG L X, SHI D Y. Resource allocation in beam hopping communication system. Proc. of the IEEE/AIAA 37th Digital Avionics Systems Conference, 2018. DOI: 10.1109/DASC.2018.8569327. |
18 | LIU H Y, WANG Y, YU PENG, et al. Satellite relay task scheduling based on dynamic antenna setup time and splittable task. Proc. of the IEEE Global Communications Conference, 2022: 3917−3922. |
19 | FANG Y S, CHEN Y W. Constraint programming model of TDRSS single access link scheduling problem. Proc. of the International Conference on Machine Learning and Cybernetics, 2006: 948−951. |
20 |
CHU X G, CHEN Y N, TAN Y J An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling. Advances in Space Research, 2017, 60 (9): 2077- 2090.
doi: 10.1016/j.asr.2017.07.026 |
21 |
TIZIANA S, GIOVANNI V, STEFANO S, et al Planning and scheduling algorithms for the Cosmo-skymed constellation. Aerospace Science and Technology, 2008, 12 (7): 535- 544.
doi: 10.1016/j.ast.2008.01.001 |
22 | ZHENG Z X, GUO J, EBERHARD G Distributed onboard mission planning for multi-satellite systems. Aerospace Science and Technology, 2019, 89 (1): 111- 122. |
23 | XU Y J, LIU X L, HE R J, et al Multi-satellite scheduling framework and algorithm for very large area observation. Acta Astronautica, 2020, 167 (1): 93- 107. |
24 | ZHUANG S F, YIN Z D, WU Z L, et al. The relay satellite scheduling based on artificial bee colony algorithm. Proc. of the International Symposium on Wireless Personal Multimedia Communications, 2014: 635−640. |
25 | SAID N, MUHAMMAD I, JOSE M DRALBA: dynamic and resource aware load balanced scheduling approach for cloud computing. IEEE Access, 2021, 9, 61283- 61297. |
26 |
ZHIBO E, SHI R H, GAN L, et al Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm. Acta Astronautica, 2021, 178, 645- 657.
doi: 10.1016/j.actaastro.2020.08.041 |
27 | LI P Y, LI J D, LI H Y, et al. Graph based task scheduling algorithm for earth observation satellites. Proc. of the IEEE Global Communications Conference, 2018. DOI:10.1109/GLOCOM.2018.8647444. |
28 | SUNIL S, GOUTAM S, An optimal scheduling policy for satellite constellation deployment. Proc. of the IEEE International Conference on Industrial Engineering and Engineering Management, 2017: 100−104. |
29 |
WEI Z, LONG T, SHI R H, et al Scheduling optimization of multiple hybrid-propulsive spacecraft for geostationary space debris removal missions. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (3): 2304- 2326.
doi: 10.1109/TAES.2021.3131294 |
30 | CUI R W, HAN W, SU X C, et al A multi-objective hyper heuristic framework for integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration. Aerospace Science and Technology, 2020, 107 (1): 106346. |
31 |
WEN J, LIU X L, HE L Real-time online rescheduling for multiple agile satellites with emergent tasks. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1407- 1420.
doi: 10.23919/JSEE.2021.000120 |
[1] | Jian WU, Yuning CHEN, Yongming HE, Lining XING, Yangrui HU. Survey on autonomous task scheduling technology for Earth observation satellites [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1176-1189. |
[2] | Haowei ZHANG, Junwei XIE, Zhaojian ZHANG, Lei SHAO, Tangjun CHEN. Variable scheduling interval task scheduling for phased array radar [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 937-946. |
[3] | Haowei ZHANG, Junwei XIE, Zhaojian ZHANG, Binfeng ZONG, Chuan SHENG. Pulse interleaving scheduling algorithm for digital array radar [J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 67-73. |
[4] | Aijun Liu, Michele Pfund, and John Fowler. Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 422-433. |
[5] | Xiong Fu and Yeliang Cang. Task scheduling and virtual machine allocation policy in cloud computing environment [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 847-. |
[6] | Xiaolong Xu, JiaxingWu, Geng Yang, and Ruchuan Wang. Low-power task scheduling algorithm for large-scale cloud data centers [J]. Journal of Systems Engineering and Electronics, 2013, 24(5): 870-878. |
[7] | Jianghan Zhu, Lining Zhang, Dishan Qiu, and Haoping Li. Task scheduling for multi-electro-magnetic detection satellite with a combined algorithm [J]. Journal of Systems Engineering and Electronics, 2012, 23(1): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||