Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (3): 753-768.doi: 10.23919/JSEE.2023.000121
• CONTROL THEORY AND APPLICATION • Previous Articles
Yue ZANG1(), Yao ZHANG1,*(), Quan HU1(), Mou LI2(), Yujun CHEN2()
Received:
2022-01-04
Online:
2024-06-18
Published:
2024-06-19
Contact:
Yao ZHANG
E-mail:zangyue2016@bit.edu.cn;zhangyao@bit.edu.cn;huquan@bit.edu.cn;limou2333@163.com;chenyj1001@163.com
About author:
Supported by:
Yue ZANG, Yao ZHANG, Quan HU, Mou LI, Yujun CHEN. Contact detumbling toward a nutating target through deformable effectors and prescribed performance controller[J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 753-768.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 3
Deformation task requirement of the effector and the arm joints"
Item | Value |
Initial position of the geometric center of the end tips/m | [6 1.5 0] |
Final position of the geometric center of the end tips/m | [6 1.7 0] |
Initial joints configuration/(°) | [16.95 2.28 −37.15 −12.24 −5.07 8.18 −64.26] |
Initial xc/m | 0.3464 (θp0 = 30.29 °) |
Demand deformation of xc/m | |
Demand deformation of joints/(°) | [1.9 −0.02 0.06 0.07 −0.27 −0.32 −1.93] |
Table 4
Simulation parameters"
Item | Value |
SMC | |
PPASMC | |
Initial state of the target | |
Initial state of the end-effector | xc=0.1 m |
Desired state of the end-effector | xc=0.17 m |
Impedance parameters of the deformable end-effectors | [10 15 10] |
Table 5
Simulation results of the approaching"
Parameter | Simulation 1 | Simulation 2 |
PPSMC | SMC | |
Angular accerleration of target/(°/s2) | −0.0177 | −0.0101 |
Variation range of the target displacement/m | 0.0083 | 0.0247 |
Average value of the normal contact force of one end-effector/N | ||
Average value of the resultant force and torque acting on the target/(N/Nm) | ||
Average tracking error of the arm joints/(°) | [0.026 0.022 0.014 0.007 0.003 0.093 0.093] | [0.183 0.038 0.090 0.009 0.006 0.109 0.109] |
Variation range of the distance between the end tips and the surface center/m | 0.062 | 0.075 |
1 | SHAN M H, GUO J, GILL E Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016, 80, 18- 32. |
2 | SHEN D, LIU J Analysis of the effectiveness of launch traffic model to the space debris environment. Chinese Journal of Space Science, 2020, 40 (3): 349- 356. |
3 | HAKIMA H, EMAMI M R. Adaptive detumbling controller for deorbiter cubesat. Proc. of the IEEE Aerospace Conference, 2020. DOI: 10.1109/AERO47225.2020.9172727. |
4 | LIU X G, LU Y, ZHANG Q, et al An application of eddy current effect on the active detumble of uncontrolled satellite with tilt air gap. IEEE Trans. on Magnetics, 2019, 55 (12): 1- 11. |
5 | LI M, ZHANG Y, ZHANG J R, et al Detumbling method for uncontrolled satellite based on eddy currents. Journal of Guidance, Control, and Dynamics, 2020, 43 (8): 1444- 1455. |
6 | XU W F, YAN L, HU Z H, et al Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target. Chinese Journal of Aeronautics, 2019, 32 (9): 2151- 2163. |
7 | CHEN G, WANG Y Q, WANG Y F, et al Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target. Chinese Journal of Aeronautics, 2020, 33 (3): 1093- 1106. |
8 | ZANG Y, ZHANG Y, ZHANG J R, et al Multipoint contact dynamics and the detumbling strategy for a fast-tumbling target. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (4): 3113- 3122. |
9 | LIU Y Q, YU Z W, LIU X F, et al Active detumbling technology for high dynamic non-cooperative space targets. Multibody System Dynamics, 2019, 47 (1): 21- 41. |
10 | WANG X L, ZHOU Z C, CHEN Y J, et al Optimal contact control for space debris detumbling and nutation damping. Advances in Space Research, 2020, 66 (4): 951- 962. |
11 | WU S, MOU F L, LIU Q, et al Contact dynamics and control of a space robot capturing a tumbling object. Acta Astronautica, 2018, 151 (10): 532- 542. |
12 | ONO A, YOKOYAMA K. Laminated-type multi-joint portion drive mechanism and manufacturing method therefor, grasping hand and robot arm provided with the same. The United States: US 2006/0028041 A1, 2006. |
13 | HAN F, SUN K, LIU Y, et al Design, testing and evaluation of an end-effector for self-relocation. Robotica, 2016, 34 (12): 2689- 2728. |
14 | YOSHIDA K, NAKANISHI H. The TAKO (target collaborativize) flyer: a new concept for future satellite servicing. RYCROFT M, CROSBY N, ed. Smaller Satellites: Bigger Business?: 397–399. |
15 | PUNNING A, KRUUSMAA M, AABLOO A Surface resistance experiments with IPMC sensors and actuators. Sensors & Actuators A Physical, 2007, 133 (1): 200- 209. |
16 | FENG F, LIU Y W, LIU H, et al Design schemes and comparison research of the end-effector of large space manipulator. Chinese Journal of Mechanical Engineering, 2012, 56 (4): 674- 687. |
17 | ZHU M M, XIAO S, YU F Torque estimation for robotic joint with harmonic drive transmission based on system dynamic characteristics. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1320- 1331. |
18 | GE D M, SUN G H, ZOU Y J, et al Impedance control of multi-arm space robot for the capture of non-cooperative targets. Journal of Systems Engineering and Electronics, 2020, 31 (5): 1051- 1061. |
19 | WANG X Y, SHI L L, KATUPITIYA J A strategy to decelerate and capture a spinning object by a dual-arm space robot. Aerospace Science and Technology, 2021, 113, 106682. |
20 | LIU X F, ZHANG X Y, CAI G P, et al A collision control strategy for detumbling a non-cooperative spacecraft by a robotic arm. Multibody System Dynamics, 2021, 53, 225- 255. |
21 | ZONG L J, LUO J J, WANG M M Optimal detumbling trajectory generation and coordinated control after space manipulator capturing tumbling targets. Aerospace Science and Technology, 2021, 112, 106626. |
22 | BECHLIOULIS C P, ROVITHAKIS G A Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Trans. on Automatic Control, 2008, 53 (9): 2090- 2099. |
23 | XIA K W, ZOU Y Neuroadaptive saturated control for relative motion based noncooperative spacecraft proximity with prescribed performance. Acta Astronautica, 2021, 180, 361- 369. |
24 | YU Z Q, ZHANG Y M, JIANG B. PID-type fault-tolerant prescribed performance control of fixed-wing UAV. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1053−1061. |
25 | LIU L X, YAO W, GUO Y Prescribed performance tracking control of a free-flying flexible-joint space robot with disturbances under input saturation. Journal of the Franklin Institute, 2021, 358 (9): 4571- 4601. |
26 | ZHENG S P, NIU X J, PENG C H Adaptive super-twisting-tike sliding mode control with prescribed performance for robot manipulators. Journal of Mechanics in Medicine and Biology, 2019, 19 (8): 1940053. |
27 | WEI C S, LUO J J, DAI H H, et al Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications. Acta Astronautica, 2018, 146, 228- 242. |
28 | KANE T R, LEVINSON D A. Dynamics: theory and applications. New York: McGraw-Hill, 1985. |
29 | TARN T J, SHOULTS G A, YANG S P A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 1996, 3, 269- 283. |
30 | HU Q, ZHANG J R Maneuver and vibration control of flexible manipulators using variable-speed control moment gyros. Acta Astronautica, 2015, 113 (8/9): 105- 119. |
31 | HOGAN N. Impedance control: an approach to manipulation. 2. implementation. Proc. of the American Control Conference, 1984: 304−313. |
32 | CHOI T Y, CHOI B S, SEO K H. Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety. IEEE Trans. on Control Systems Technology, 2011, 19(4): 832−842. |
[1] | Dongdong YAO, Xiaofang WANG, Hai LIN, Zhuping WANG. Leader trajectory planning method considering constraints of formation controller [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1294-1308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||