1 |
SHEN T, ZHANG F, CHENG J W. A comprehensive overview of knowledge graph completion. Knowledge-Based Systems, 2022, 255: 109597.
|
2 |
XUE B C, ZOU L Knowledge graph quality management: a comprehensive survey. IEEE Trans. on Knowledge and Data Engineering, 2023, 35 (5): 4969- 4988.
|
3 |
PRASOJO R E, DARARI F, RAZNIEWSKI S, et al. Managing and consuming completeness information for wikidata using COOL-WD. Proc. of the 7th International Workshop on Consuming Linked Data, Co-located with the 15th International Semantic Web Conference, 2016. https://ceur-ws.org/Vol1666/paper-02.pdf.
|
4 |
FARBER M, BARTSCHERER F, MENNE C, et al Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web, 2018, 9 (1): 77- 129.
|
5 |
HOGAN A, BLOMQVIST E, COCHEA M, et al Knowledge graphs. ACM Computing Surveys, 2021, 54 (4): 1- 37.
|
6 |
BRACK A, HOPPE A, STOCKER M, et al Analysing the requirements for an open research knowledge graph: use cases, quality requirements, and construction strategies. International Journal on Digital Libraries, 2022, 23 (1): 33- 55.
doi: 10.1007/s00799-021-00306-x
|
7 |
WANG X Y, CHEN L Z, BAN T Y, et al Knowledge graph quality control: a survey. Fundamental Research, 2021, 1 (5): 607- 626.
doi: 10.1016/j.fmre.2021.09.003
|
8 |
ISSA S, ADEKUNLE O, HAMDI F, et al Knowledge graph completeness: a systematic literature review. IEEE Access, 2021, 9, 31322- 31339.
doi: 10.1109/ACCESS.2021.3056622
|
9 |
LAJUS J, SUCHANEK F M. Are all people married? Determining obligatory attributes in knowledge bases. Proc. of the World Wide Web Conference, 2018: 1115–1124.
|
10 |
BALARAMAN V, RAZNIEWSKI S, NUTT W. Recoin: relative completeness in wikidata. Proc. of the Web Conference, 2018: 1787–1792.
|
11 |
CAPPIELLO C, NOIA T D, MARCU B A, et al. A quality model for linked data exploration. Proc. of the International Conference on Web Engineering, 2016: 397–404.
|
12 |
WISESA A, DARARI F, KRISNADHI A, et al. Wikidata completeness profiling using proWD. Proc. of the 10th International Conference on Knowledge Capture, 2019: 123–130.
|
13 |
BARONCINI S, SARTINI B, VAN ERP M, et al Is dc: subject enough? A landscape on iconography and iconology statements of knowledge graphs in the semantic web. Journal of Documentation, 2023, 79 (7): 115- 136.
|
14 |
RAZNIEWSKI S, ARNAOUT H, GHOSH S, et al. Completeness, recall, and negation in open-world knowledge bases: a survey. ACM Computing Surveys, 2023, 56(6): 150.
|
15 |
PELLISSIER T T, STEPANOVA D, RAZNIEWSKI S, et al Completeness-aware rule learning from knowledge graphs. Proc. of the 16th International Semantic Web Conference, 2017, 507- 525.
|
16 |
GALARRAGA L, RAZNIEWSKI S, AMARILLI A, et al. Predicting completeness in knowledge bases. Proc. of the 10th ACM International Conference on Web Search and Data Mining, 2017: 375–383.
|
17 |
DARARI F, RAZNIEWSKI S, PRASOJO R, et al. Enabling fine-grained RDF data completeness assessment. Proc. of the International Conference on Web Engineering, 2016: 170–187.
|
18 |
LUGGEN M, DIFALLAH D, SARASUA C, et al. Non-parametric class completeness estimators for collaborative knowledge graphs — the case of wikidata. Proc. of the International Semantic Web Conference, 2019: 453–469.
|
19 |
CHERIX D, USBECK R, BOTH A, et al. CROCUS: clusterbased ontology data cleansing. Proc. of the CEUR Workshop, 2014: 7−14.
|
20 |
SOULET A, GIACOMETTI A, MARKHOFF B, et al. Representativeness of knowledge bases with the generalized Benford’s law. Proc. of the International Semantic Web Conference, 2018: 374–390.
|
21 |
SIMSEK U, KARLE E, ANGELE K, et al A knowledge graph perspective on knowledge engineering. SN Computer Science, 2022, 4 (1): 16.
doi: 10.1007/s42979-022-01429-x
|
22 |
ABIAN D, MERONO-PENUELA A, SIMPERL E. An analysis of content gaps versus user needs in the wikidata knowledge graph. Proc. of the International Semantic Web Conference, 2022: 354–374.
|
23 |
SYCHEV O Combining neural networks and symbolic inference in a hybrid cognitive architecture. Procedia Computer Science, 2021, 190, 728- 734.
doi: 10.1016/j.procs.2021.06.085
|
24 |
JI G L, LIU K, HE S Z, et al. Knowledge graph completion with adaptive sparse transfer matrix. Proc. of the AAAI Conference on Artificial Intelligence, 2016. DOI: https://doi.org/10.1609/aaai.030i1.10089.
|
25 |
AKINNUBI A, AJIBOYE J Knowledge graph: a survey. Journal of Robotics and Automation Research, 2023, 4 (2): 366- 377.
|
26 |
CHEN X J, JIA S B, XIANG Y A review: knowledge reasoning over knowledge graph. Expert Systems with Applications, 2020, 141 (112): 948.
doi: 10.1016/j.eswa.2019.112948
|
27 |
PAN S R, LUO L H, WANG Y F, et al. Unifying large language models and knowledge graphs: a roadmap. IEEE Trans. on Knowledge and Data Engineering, 2024. DOI: 10.1109/TKDE.2024.3352100.
|
28 |
TIWARI S, Al-ASWADI F N, GAURAV D Recent trends in knowledge graphs: theory and practice. Soft Computing, 2021, 25 (31): 8337- 8355.
doi: 10.1007/s00500-021-05756-8
|
29 |
CUI Y N, WANG Y X, SUN Z Q, et al Lifelong embedding learning and transfer for growing knowledge graphs. Proc. of the AAAI Conference on Artificial Intelligence, 2023, 37 (4): 4217- 4224.
doi: 10.1609/aaai.v37i4.25539
|
30 |
TAMASAUSKAITE G, GROTH P Defining a knowledge graph development process through a systematic review. ACM Transactions on Software Engineering and Methodology, 2023, 32 (1): 1- 40.
|
31 |
CHEN Z, WANG Y H, ZHAO B, et al Knowledge graph completion: a review. IEEE Access, 2020, 8, 192435- 192456.
doi: 10.1109/ACCESS.2020.3030076
|
32 |
WANG S, HUANG X, CHEN C, et al. Reform: error-aware few-shot knowledge graph completion. Proc. of the 30th ACM International Conference on Information & Knowledge Management, 2021: 1979−1988.
|
33 |
YOSHIDA M, ARASE Y, TSUNODA T, et al. Wikipedia page view reflects web search trend. Proc. of the ACM Web Science Conference, 2015: 65.
|