Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (3): 558-574.doi: 10.23919/JSEE.2023.000069
• HIGH-DIMENSIONAL SIGNAL PROCESSING • Previous Articles
Rong FAN1,2(), Chengke SI2(), Yi HAN2(), Qun WAN1,*()
Received:
2022-08-10
Accepted:
2023-04-22
Online:
2024-06-18
Published:
2024-06-19
Contact:
Qun WAN
E-mail:fanrong@cafuc.edu.cn;sichengke@cafuc.edu.cn;Han.Holly@Outlook.com;wanqun@uestc.edu.cn
About author:
Supported by:
Rong FAN, Chengke SI, Yi HAN, Qun WAN. RFFsNet-SEI: a multidimensional balanced-RFFs deep neural network framework for specific emitter identification[J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 558-574.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The architecture details of RFFsNet-SEI"
Name | Component | Output size | CBL | Conv | #Res |
ResBlock1 | ResUnit(top) | 64×1×16 | 3×1,16/1 | 3×1,16/1 | 1×1,16/1 |
ResUnit(mid.) | 64×1×16 | 3×1,16/1 | 3×1,16/1 | 1×1,16/1 | |
ResUnit(bot.) | 64×1×16 | 3×1,16/1 | 3×1,16/1 | 1×1,16/1 | |
CBFs | Component | Output size | CBL(top) | CBL(mid.) | CBL(bot.) |
CBF(left) | 64×1×1 | 1×1,16/1 | 3×1,32/1 | 1×1,1/1 | |
CBF(mid.) | 64×1×3 | 1×1,16/1 | 3×1,32/1 | 1×1,3/1 | |
CBF(right) | 64×1×4 | 1×1,16/1 | 3×1,32/1 | 1×1,4/1 | |
CBL | 64×1×8 | 1×1,8/1 | − | − | |
ResBlock2 | Component | Output size | CBL | Conv | #Res |
ResUnit(top) | 32×1×16 | 3×1,16/2 | 3×1,16/1 | 1×1,16/2 | |
ResUnit(mid.) | 16×1×16 | 3×1,16/2 | 3×1,16/1 | 1×1,16/2 | |
ResUnit(bot.) | 8×1×16 | 3×1,16/2 | 3×1,16/1 | 1×1,16/2 | |
CBF*s | Component | Output size | CBL(top) | CBL(mid.) | CBL(bot.) |
CBF*(left) | 1×1×2 | 1×1,16/2 | 3×1,32/2 | 1×1,2/2 | |
CBF*(mid.) | 1×1×3 | 1×1,16/2 | 3×1,32/2 | 1×1,3/2 | |
CBF*(right) | 1×1×3 | 1×1,16/2 | 3×1,32/2 | 1×1,3/2 | |
CBL | 1×1×8 | 1×1,8/1 | − | − | |
CBF | Component | Output size | CBL(top) | CBL(mid.) | CBL(bot.) |
CBF | 1×1×8 | 1×1,16/1 | 3×1,32/1 | 1×1,8/1 | |
FC | 10×1 | − | − | − |
Table 2
Details of power amplifier coefficients"
Emitter | V=2 | U=3 | |||||
E1 | 1.00 | −0.36 | −0.36 | 1.00 | −0.36 | −0.36 | |
E2 | 1.00 | −0.27 | −0.27 | 1.00 | −0.27 | −0.27 | |
E3 | 1.00 | −0.18 | −0.18 | 1.00 | −0.18 | −0.18 | |
E4 | 1.00 | −0.09 | −0.09 | 1.00 | −0.09 | −0.09 | |
E5 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | |
E6 | 1.00 | 0.09 | 0.09 | 1.00 | 0.09 | 0.09 | |
E7 | 1.00 | 0.18 | 0.18 | 1.00 | 0.18 | 0.18 | |
E8 | 1.00 | 0.27 | 0.27 | 1.00 | 0.27 | 0.27 | |
E9 | 1.00 | 0.36 | 0.36 | 1.00 | 0.36 | 0.36 | |
E10 | 1.00 | 0.45 | 0.45 | 1.00 | 0.45 | 0.45 |
Table 7
Effectiveness verification of RFFsNet-SEI"
Step | Note | MFLOPs | Para. | FPS | Simulation-data Acc/% | Real-data Acc/% |
S1 | RFFsNet-SEI-Basic | 601.5 | 12976 | 15366 | 49.1 | 21.0 |
S2 | + ResBlcoks1 | 1756.5 | 18384 | 10380 | 58.3 | 39.2 |
S3 | +ResBlcoks2 | 1993.4 | 23872 | 7135 | 77.2 | 78.1 |
S4 | +auxiliary CBL blocks | 2627.2 | 26730 | 5645 | 79.7 | 82.3 |
S5 | nC:16→8 | 692.0 | 7514 | 9851 | 76.0 | 78.1 |
S6 | nC:16→32 | 10266.8 | 100874 | 2687 | 79.6 | 82.3 |
Table 9
Comparison in terms of prediction speed, accuracy, network size, and complexity of different methods"
Criterion | RFFS-SVM [ | VMD-KNN [ | MAPEN [ | MDFFIL [ | BISPECTRAL-CNN [ | CNN-1D [ | DRN [ | MFFDEL-SEI [ | RFFSNET-SEI (Proposed) |
FPS | 171 | 84 | 144 | 413 | 372 | 35643 | 8969 | 1073 | 5 645 |
Acc/% | 64.0 | 61.5 | 13.3 | 73.7 | 45.3 | 79.6 | 72.3 | 76.6 | 79.7 |
MFLOPs | − | − | − | 14318 | 77536 | 54 | 1684 | 2160 | 2627 |
Parameters | − | − | − | 719066 | 1246314 | 28112 | 105884 | 258856 | 26730 |
1 | XU S H. On the identification technique of individual transmitter based on signal prints. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese) |
2 | LI D, LIANG Q H, LIU H Q, et al. A novel multidimensional domain deep learning network for SAR ship detection. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60: 5203213. |
3 |
SANKHE K, BELGIOVINE M, ZHOU F, et al No radio left behind: radio fingerprinting through deep learning of physical-layer hardware impairments. IEEE Trans. on Cognitive Communications and Networking, 2020, 6 (1): 165- 178.
doi: 10.1109/TCCN.2019.2949308 |
4 | CHEN H, YANG J N, LIU H Communication transmitter individual identification based on deep residual adaptation network. Systems Engineering and Electronics, 2021, 43 (3): 603- 609. |
5 | YUAN H L, HU A Q Preamble-based detection of Wi-Fi transmitter RF fingerprints. Electronics Letters, 2010, 46 (1): 1165- 1167. |
6 | SUN L T, WANG X, HUANG Z T, Unintentional modulation microstructure enlargement. Journal of Systems Engineering and Electronics, 2022, 33(3): 522−533. |
7 | BERTONCINI C, RUDD K, NOUSAIN B, et al Wavelet fingerprinting of radio-frequency identification (RFID) tags. IEEE Trans. on Industrial Electronics, 2005, 59 (12): 4843- 4850. |
8 |
LOPEZ G, GRAJAL J, OSORIO A, et al Digital channelized receiver based on time-frequency analysis for signal interception. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (3): 879- 898.
doi: 10.1109/TAES.2005.1541437 |
9 | LUNDEN J, KOIVUNEN V. Automatic radar waveform recognition. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 124−136. |
10 |
LIU Z G, ZHANG Q G An approach to recognize the transient disturbances with spectral kurtosis. IEEE Trans. on Instrumentation and Measurement, 2014, 63 (1): 46- 55.
doi: 10.1109/TIM.2013.2277513 |
11 |
YUAN Y J, HUANG Z T, WU H, et al Specific emitter identification based on hilbert-huang transform-based time-frequency-energy distribution features. IET Communication, 2014, 8 (13): 2404- 2412.
doi: 10.1049/iet-com.2013.0865 |
12 | HE B, WANG F G Cooperative specific emitter identification via multiple distorted receivers. IEEE Trans. on Information Forensics and Security, 2016, 15, 3791- 3806. |
13 |
SATIJA U, TRIVEDI N, BISWAL G, et al Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios. IEEE Trans. on Information Forensics and Security, 2019, 14 (3): 581- 591.
doi: 10.1109/TIFS.2018.2855665 |
14 |
SUN L T, WANG X, YANG A F, et al Radio frequency fingerprint extraction based on multi-dimension approximate entropy. IEEE Signal Processing Letters, 2020, 27, 471- 475.
doi: 10.1109/LSP.2020.2978333 |
15 | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning: adaptive computation and machine learning series. Cambridge: MIT Press, 2016. |
16 |
WANG Y, GUI G, GACANIN H, et al An efficient specific emitter identification method based on complex-valued neural networks and network compression. IEEE Journal on Selected Areas in Communications, 2021, 39 (8): 2305- 2317.
doi: 10.1109/JSAC.2021.3087243 |
17 |
QU L Z, LIU H, HUANG K J Specific emitter identification based on multi-domain feature fusion and integrated learning. Symmetry, 2021, 13 (8): 1481.
doi: 10.3390/sym13081481 |
18 |
DING L, WANG S L, WANG F G, et al Specific emitter identification via convolutional neural networks. IEEE Communications Letters, 2018, 22 (12): 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465 |
19 |
XIAO Y, WEI X Z Specific emitter identification of radar based on one dimensional convolution neural network. Journal of Physics: Conference Series, 2020, 1550, 032114.
doi: 10.1088/1742-6596/1550/3/032114 |
20 | WENG L T R, PENG J L, HE Y, et al Specific emitter identification of ADS-B signal based on deep residual network. Aero Weaponry, 2021, 28 (4): 24- 29. |
21 |
XIAO Z L, YAN Z Y Radar emitter identification based on novel time-frequency spectrum and convolutional neural network. IEEE Communications Letters, 2021, 25 (8): 2634- 2638.
doi: 10.1109/LCOMM.2021.3084043 |
22 |
LIU Z M Multi-feature fusion for specific emitter identification via deep ensemble learning. Digital Signal Processing, 2021, 110, 102939.
doi: 10.1016/j.dsp.2020.102939 |
23 |
ZHAO Y R, WANG X, LIN Z Y, et al Multi-classifier fusion for open-set specific emitter identification. Remote Sensing, 2022, 14, 2226.
doi: 10.3390/rs14092226 |
24 | ZHUO F, HUANG Y L, CHEN J. Specific emitter identification based on linear polynomial fitting of the energy envelope. Proc. of the IEEE 6th International Conference on Electronics Information and Emergency Communication, 2016: 278−281. |
25 |
ZHANG J, WANG F, DOBRE O A Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios. IEEE Trans. on Information Forensics Security, 2016, 11 (6): 1192- 1205.
doi: 10.1109/TIFS.2016.2520908 |
26 | WONG L J, HEADLEY S, ANDREWS R , et al. Clustering learned CNN features from raw I/Q data for emitter identification. Proc. of the IEEE Military Communications Conference, 2018: 26−33. |
27 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proc. of the International Conference on Machine Learning, 2015: 448−456. |
28 |
FAN R, ZHU X Y, TANG W B, et al MFFNet: multi-path features fusion network for source enumeration. IEEE Communications Letters, 2022, 26 (3): 572- 576.
doi: 10.1109/LCOMM.2021.3139676 |
29 |
GONG J L, XU X D, LEI Y K Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN. IEEE Trans. on Information Forensics and Security, 2020, 15, 2898- 2913.
doi: 10.1109/TIFS.2020.2978620 |
30 |
FAN R, SI C K, GUO H S, et al Direction finding for coherent sources with deep hybrid neural networks. International Journal of Electronics, 2022, 109 (5): 811- 833.
doi: 10.1080/00207217.2021.1941293 |
31 | KENINGTON P B. High linearity RF amplifier design. Boston: Artech House, 2000. |
32 |
HU J, SHEN L, ALBANIE S, et al Squeeze-and-excitation networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372 |
33 |
ZHANG C B, JIANG P T, HOU Q B, et al Delving deep into label smoothing. IEEE Trans. on Image Processing, 2021, 30, 5984- 5996.
doi: 10.1109/TIP.2021.3089942 |
34 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958. |
[1] | Siting LYU, Xiaohui LI, Tao FAN, Jiawen LIU, Mingli SHI. Deep learning for fast channel estimation in millimeter-wave MIMO systems [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1088-1095. |
[2] | Liting SUN, Xiang WANG, Zhitao HUANG. Unintentional modulation microstructure enlargement [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 522-533. |
[3] | Chuan LIN, Qing CHANG, Xianxu LI. Uplink NOMA signal transmission with convolutional neural networks approach [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 890-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||