Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (1): 195-210.doi: 10.23919/JSEE.2024.000007
• CONTROL THEORY AND APPLICATION • Previous Articles
Licong ZHANG1(), Chunlin GONG1,*(), Hua SU1(), Da Ronch ANDREA2()
Received:
2022-02-28
Online:
2024-02-18
Published:
2024-03-05
Contact:
Chunlin GONG
E-mail:zhanglicong@mail.nwpu.edu.cn;leonwood@nwpu.edu.cn;su@nwpu.edu.cn;A.Da-Ronch@soton.ac.uk
About author:
Licong ZHANG, Chunlin GONG, Hua SU, Da Ronch ANDREA. Design methodology of a mini-missile considering flight performance and guidance precision[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 195-210.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 3
Disturbances"
Error sources | Description | Nominal value | Error range | Uncertain type | |
v0/(m/s) | Launch velocity | 20 | ∆v0: | [−5, 5] | Uniform |
θ0/(º) | Launch longitudinal angle | 15 | ∆θ0: | [−2, 2] | Uniform |
ψ0/(º) | Launch lateral angle | 0 | ∆ψ0: | [−2, 2] | Uniform |
m0/kg | Initial mass | 1.5 | ∆m0: | [−0.075, 0.075] | Uniform |
vg-lon/(m/s) | Longitudinal gust velocity | 0 | ∆vg-lon: | [−5, 5] | Uniform |
vg-lat/(m/s) | Lateral gust velocity | 0 | ∆vg-lat: | [−2.5, 2.5] | Uniform |
Table 4
L12(26) orthogonal table"
ID | Factor | ID | Factor | ||||||||||||
∆v0/ (m/s) | ∆θ0/ (º) | ∆ψ0/ (º) | ∆m0/ kg | ∆vg-lon/ (m/s) | ∆vg-lat/ (m/s) | ∆v0/ (m/s) | ∆θ0/ (º) | ∆ψ0/ (º) | ∆m0/ kg | ∆vg-lon/ (m/s) | ∆vg-lat/ (m/s) | ||||
1 | 5 | 2 | 2 | 0.075 | 5 | 2.5 | 7 | −5 | 2 | −2 | −0.075 | 5 | 2.5 | ||
2 | 5 | 2 | 2 | 0.075 | 5 | −2.5 | 8 | −5 | 2 | −2 | 0.075 | −5 | −2.5 | ||
3 | 5 | 2 | −2 | −0.075 | −5 | 2.5 | 9 | −5 | 2 | 2 | −0.075 | −5 | −2.5 | ||
4 | 5 | −2 | 2 | −0.075 | −5 | 2.5 | 10 | −5 | −2 | −2 | 0.075 | 5 | 2.5 | ||
5 | 5 | −2 | −2 | 0.075 | −5 | −2.5 | 11 | −5 | −2 | 2 | −0.075 | 5 | −2.5 | ||
6 | 5 | −2 | −2 | −0.075 | 5 | −2.5 | 12 | −5 | −2 | 2 | 0.075 | −5 | 2.5 |
Table 5
Design variables, constraints, and objectives"
Parameter | Description | Type | Lower bound | Baseline | Upper bound | ||
Design variable | xP | Lc/mm | Length of the combustion chamber | Continuous | 100.00 | 127.00 | 144.00 |
Dt/mm | Diameter of throat | Continuous | 5.00 | 6.00 | 8.00 | ||
e | Nozzle area expansion ratio | Continuous | 1.00 | 2.50 | 3.00 | ||
xL | xbattery/mm | Position of battery | Continuous | 85.00 | 87.00 | 240.00 | |
xcomputer/mm | Position of computer | Continuous | 85.00 | 200.00 | 240.00 | ||
xIMU/mm | Position of IMU | Continuous | 85.00 | 230.00 | 240.00 | ||
xA | xrudder/mm | Position of rudder | Continuous | 85.00 | 138.50 | 200.00 | |
crudder/mm | Chord of rudder | Continuous | 8.00 | 13.00 | 17.00 | ||
srudder/mm | Span of rudder | Continuous | 10.00 | 27.00 | 35.00 | ||
cfin/mm | Chord of fin | Continuous | 40.00 | 50.00 | 80.00 | ||
sfin/mm | Span of fin | Continuous | 20.00 | 28.50 | 30.00 | ||
xC | Kr | Parameter 1 for control tuning | Continuous | 0 | 11.37 | 20 | |
Kω | Parameter 2 for control tuning | Continuous | −30 | 17.84 | 30 | ||
Kn | Parameter 3 for control tuning | Continuous | −20 | 4.502 | 20 | ||
Ta | Type of actuator | Discrete | 0 | 0 | 5 | ||
xG | N | Proportional constant | Continuous | 2.00 | 3.00 | 6.00 | |
Ts | Type of seeker | Discrete | 0 | 0 | 5 | ||
Constraints and objective | gL | mtot/kg | Total mass | − | − | 1.53 | 1.6 |
Sij-min/mm | Minimum separation | − | 0 | 4.00 | − | ||
Stot/mm | Total separation | − | 0 | 24.00 | 35.00 | ||
gP | pc/MPa | Pressure in the combustion chamber | − | 6.00 | 8.99 | − | |
fM.B. | R/m | Range | − | − | 2004.20 | Maximization | |
fGNC, gG | E/m | Guidance error | − | Minimization | 3.93 | 5 |
Table 6
Results of OPT 1 and OPT 2"
Baseline value | OPT 1 | OPT 2 | |||||||||||
Parameter | Optimum A | Optimum B | Optimum C | Optimum S | |||||||||
Value | ∆/% | Value | ∆/% | Value | ∆/% | Value | ∆/% | ||||||
Design variables of the missile: xP, xL, and xA | Lc/mm | 127.00 | 123.38 | −2.85 | 128.88 | 1.48 | 128.93 | 1.52 | 128.99 | 1.57 | |||
Dt/mm | 6.00 | 5.54 | −7.68 | 5.00 | −16.67 | 5.00 | −16.64 | 5.00 | −16.66 | ||||
e | 2.50 | 1.93 | −22.95 | 2.99 | 19.63 | 2.99 | 19.78 | 2.96 | 18.57 | ||||
xrudder/mm | 138.50 | 127.96 | −7.61 | 123.02 | −11.18 | 145.21 | 4.84 | 85.19 | −38.49 | ||||
xbattery/mm | 87.00 | 195.99 | 125.28 | 194.16 | 123.17 | 75.66 | −13.03 | 200.19 | 130.10 | ||||
xcomputer/mm | 200.00 | 85.00 | −57.50 | 85.00 | −57.50 | 110.01 | −45.00 | 169.19 | −15.41 | ||||
xIMU/mm | 230.00 | 234.99 | 2.17 | 232.46 | 1.07 | 202.51 | −11.95 | 146.19 | −36.44 | ||||
crudder/mm | 13.00 | 15.36 | 18.16 | 16.40 | 26.12 | 16.97 | 30.51 | 17.00 | 30.76 | ||||
srudder/mm | 22.00 | 30.57 | 38.96 | 31.65 | 43.85 | 33.86 | 53.90 | 34.95 | 58.88 | ||||
cfin/mm | 50.00 | 65.89 | 31.77 | 53.98 | 7.96 | 45.63 | −8.74 | 40.27 | −19.47 | ||||
sfin/mm | 29.00 | 28.48 | −1.80 | 29.83 | 2.85 | 29.99 | 3.43 | 29.93 | 3.22 | ||||
Ta | 0 | 0 | − | 1 | − | 2 | − | 1 | − | ||||
Ts | 0 | 0 | − | 0 | − | 5 | − | 0 | − | ||||
Performances | mtot/kg | 1.53 | 1.56 | 1.87 | 1.54 | 0.53 | 1.46 | −4.52 | 1.51 | −1.45 | |||
R/m | 2004.20 | 1775.03 | −11.43 | 2399.43 | 19.72 | 2700.21 | 34.73 | 2521.80 | 25.83 | ||||
CEP/m | 2.33 | 0.08 | −96.74 | 0.16 | −92.96 | 0.67 | −71.21 | 1.13 | −51.81 |
1 | FISH T. AUSA 2015: Raytheon’s long-range Pike. Shephard Media.https://www.shephardmedia.com/news/landwarfareintl/ausa-2015-dangerous-pikeys/. |
2 | SOLOWAY D, OUZTS P, WOLPERT D, et al. The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization. Proc. of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, 2009. DOI: https://doi.org/10.2514/6.2009-7329. |
3 |
SHU J, LEE J, KIM S, et al Multistage liquid rocket weight estimation and optimization for early design stages. Journal of Aerospace Engineering, 2020, 33 (6): 04020069.
doi: 10.1061/(ASCE)AS.1943-5525.0001181 |
4 |
WANG P C, TIAN H, ZHU H, et al Multi-disciplinary design optimization with fuzzy uncertainties and its application in hybrid rocket motor powered launch vehicle. Chinese Journal of Aeronautics, 2020, 33 (5): 1454- 1467.
doi: 10.1016/j.cja.2019.11.002 |
5 |
ZHANG D X, ZHANG Y L Multidisciplinary design and optimization of an innovative nano air launch vehicle with a twin-fuselage UAV as carrier aircraft. Acta Astronautica, 2020, 170, 397- 411.
doi: 10.1016/j.actaastro.2019.11.012 |
6 | BREVAULT L, BALESDENT M, HEBBAL A Multi-objective multidisciplinary design optimization approach for partially reusable launch vehicle design. Journal of Spacecraft and Rockets, 2020, 57 (1): 373- 390. |
7 | MOON G, JUN B, KNIGHT D. A 3-loop autopilot design for a missile using an automated MDO environment. Proc. of the AIAA Modeling and Simulation Technologies Conference, 2012. DOI: https://doi.org/10.2514/6.2012-4719. |
8 |
ABD-ELATIF M A, QIAN L, BO Y M Optimization of three-loop missile autopilot gain under crossover frequency constraint. Defence Technology, 2016, 12 (1): 32- 38.
doi: 10.1016/j.dt.2015.08.006 |
9 |
REYNOSO-MEZA G, SANCHEZ H S Multidisciplinary optimisation and controller tuning: an analysis with multi-objective techniques. IFAC-PapersOnLine, 2018, 51 (4): 280- 285.
doi: 10.1016/j.ifacol.2018.06.078 |
10 |
BRIESE L E, ACQUATELLA B P, SCHNEPPER K Multidisciplinary modeling and simulation framework for launch vehicle system dynamics and control. Acta Astronautica, 2020, 170, 652- 664.
doi: 10.1016/j.actaastro.2019.08.022 |
11 | MORRIS S J, KROO I Aircraft design optimization with dynamic performance constraints. Journal of Aircraft, 2015, 27 (12): 1060- 1067. |
12 |
PEREZ R E, LIU H H T, BEHDINAN K Multidisciplinary optimization framework for control-configuration integration in aircraft conceptual design. Journal of Aircraft, 2006, 43 (6): 1937- 1948.
doi: 10.2514/1.22263 |
13 |
MIELOSZYK J, GOETZENDORF-GRABOWSKI T Introduction of full flight dynamic stability constraints in aircraft multidisciplinary optimization. Aerospace Science and Technology, 2017, 68, 252- 260.
doi: 10.1016/j.ast.2017.05.024 |
14 |
MORRIS C C, SULTAN C, SCHETZ J A, et al State variance-based approach to flight dynamic constraints in multidisciplinary design optimization. Journal of Guidance, Control, and Dynamics, 2017, 40 (5): 1206- 1220.
doi: 10.2514/1.G002278 |
15 | TAKAHASHI T, FANCIULLO T, RIDGELY D. Incorporation of flight control design tools into the multi-disciplinary conceptual design process. Proc. of the 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007. DOI: https://doi.org/10.2514/6.2007-656. |
16 | WELSTEAD J, CROUSE G L. Conceptual design optimization of an augmented stability aircraft incorporating dynamic response and actuator constraints. Proc. of the 52nd Aerospace Sciences Meeting, 2014. DOI: https://doi.org/10.2514/6.2014-0187. |
17 | YANG G H, LUM K Y. An optimization approach to integrated aircraft-controller design. Proc. of the American Control Conference, 2003: 1649−1654. |
18 |
ZHU Z, GUO H W, MA J J Aerodynamic layout optimization design of a barrel-launched UAV wing considering control capability of multiple control surfaces. Aerospace Science and Technology, 2019, 93, 105297.
doi: 10.1016/j.ast.2019.07.030 |
19 | XIAO M Y, ZHU H, DU Z Y, et al Design optimization of velocity-controlled cruise vehicle propelled by throttleable hybrid rocket motor. Aerospace Science and Technology, 2021, 115, 106784. |
20 |
SOBIESZCZANSKI-SOBIESKI J, HAFTKA R T Multidisciplinary aerospace design optimization: survey of recent developments. Structural Optimization, 1997, 14 (1): 1- 23.
doi: 10.1007/BF01197554 |
21 | ZHANG H, SONG B F, LI F, et al Multidisciplinary design optimization of an electric propulsion system of a hybrid UAV considering wind disturbance rejection capability in the quadrotor mode. Aerospace Science and Technology, 2021, 110, 106372. |
22 |
DRESIA K, JENTZSCH S, WAXENEGGER-WILFING G, et al Multidisciplinary design optimization of reusable launch vehicles for different propellants and objectives. Journal of Spacecraft and Rockets, 2021, 58 (4): 1017- 1029.
doi: 10.2514/1.A34944 |
23 | ZHENG X, GAO Y J, JING W X, et al Multidisciplinary integrated design of long-range ballistic missile using PSO algorithm. Journal of Systems Engineering and Electronics, 2020, 31 (2): 335- 349. |
24 |
WEI Z, LONG T, SHI R H, et al Multidisciplinary design optimization of long-range slender guided rockets considering aeroelasticity and subsidiary loads. Aerospace Science and Technology, 2019, 92, 790- 805.
doi: 10.1016/j.ast.2019.06.039 |
25 | VASILE J D, BRYSON J T, GRUENWALD B C, et al. A multi-disciplinary approach to design long range guided projectiles. Proc. of the AIAA Scitech 2020 Forum, 2020. DOI: https://doi.org/10.2514/6.2020-1993. |
26 | MECKSTROTH C, BLAKE B. Control focused multidisciplinary design optimization of tailless fighter aircraft. Proc. of the 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015. DOI: https://doi.org/10.2514/6.2015-2324. |
27 |
RAHMAN N U, WHIDBORNE J F Propulsion and flight controls integration for a blended-wing-body transport aircraft. Journal of Aircraft, 2010, 47 (3): 895- 903.
doi: 10.2514/1.46195 |
28 | GUPTA R, ZHAO W, KAPANIA R K, et al. Incorporating flight dynamics and control criteria into MDAO of composite aircraft. Proc. of the AIAA Scitech 2020 Forum, 2020. DOI:https://doi.org/10.2514/6.2020-1966. |
29 |
FUJIO C, OGAWA H Physical insight into axisymmetric scramjet intake design via multi-objective design optimization using surrogate-assisted evolutionary algorithms. Aerospace Science and Technology, 2021, 113, 106676.
doi: 10.1016/j.ast.2021.106676 |
30 | WANG Z N, LIU M, TANG X G, et al Multi-objective robust secure beamforming for cognitive satellite and UAV networks. Journal of Systems Engineering and Electronics, 2021, 32 (4): 789- 798. |
31 | XU Z, ZHANG E, CHEN Q W Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization. Journal of Systems Engineering and Electronics, 2020, 31 (1): 130- 141. |
32 |
TOLA C, NIKBAY M Solid rocket motor propellant optimization with coupled internal ballistic–structural interaction approach. Journal of Spacecraft and Rockets, 2018, 55 (4): 936- 947.
doi: 10.2514/1.A34066 |
33 | BLAKE W B. Missile Datcom: user’s manual-1997 FORTRAN 90 revision. State of Ohio: Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate, 1998. |
34 | ZEESHAN Q, DONG Y F, NISAR K, et al Multidisciplinary design and optimization of multistage ground-launched boost phase interceptor using hybrid search algorithm. Chinese Journal of Aeronautics, 2010, 23 (2): 170- 178. |
35 | NGUYEN N V, TYAN M, JIN S, et al Adaptive multifidelity constraints method for efficient multidisciplinary missile design framework. Journal of Spacecraft and Rockets, 2015, 53 (1): 184- 194. |
36 |
ZANDAVI S M, POURTAKDOUST S H Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm II. Structural and Multidisciplinary Optimization, 2018, 57 (2): 705- 720.
doi: 10.1007/s00158-017-1776-3 |
37 |
CHEN X Q, YAO W, ZHAO Y, et al A practical satellite layout optimization design approach based on enhanced finite-circle method. Structural and Multidisciplinary Optimization, 2018, 58 (6): 2635- 2653.
doi: 10.1007/s00158-018-2042-z |
38 | TAGUCHI G, CHOWDHURY S, WU Y. Appendix A: orthogonal arrays and linear graphs: tools for quality engineering. Taguchi’s quality engineering handbook. Hoboken, Hew Jersey: Wiley, 2004. |
39 |
ALEXANDROV N M, LEWIS R M Analytical and computational aspects of collaborative optimization for multidisciplinary design. AIAA Journal, 2002, 40 (2): 301- 309.
doi: 10.2514/2.1646 |
40 |
GRAY J, MOORE K T, HEARN T A, et al Standard platform for benchmarking multidisciplinary design analysis and optimization architectures. AIAA Journal, 2013, 51 (10): 2380- 2394.
doi: 10.2514/1.J052160 |
41 |
DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
42 | SAXENA A Synthesis of compliant mechanisms for path generation using genetic algorithm. Journal of Mechanical Design, 2004, 127 (4): 745- 752. |
43 |
SHNIDMAN D A Efficient computation of the circular error probability (CEP) integral. IEEE Trans. on Automatic Control, 1995, 40 (8): 1472- 1474.
doi: 10.1109/9.402244 |
[1] | Hongcheng ZENG, Jiadong DENG, Pengbo WANG, Xinkai ZHOU, Wei YANG, Jie CHEN. A spawning particle filter for defocused moving target detection in GNSS-based passive radar [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1085-1100. |
[2] | Hao DU, Wei WANG, Xuerao WANG, Jingqiu ZUO, Yuanda WANG. Scene image recognition with knowledge transfer for drone navigation [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1309-1318. |
[3] | Haijian XUE, Tao WANG, Xinghui CAI, Jintao WANG, Fei LIU. Anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1333-1342. |
[4] | Ronghua DU, Wenhe LIAO, Xiang ZHANG. Optimal maneuver strategy to improve the observability of angles-only rendezvous [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 1020-1032. |
[5] | Guangming ZHANG, Siqian REN, Weiwei ZHAO, Xiuyi LI. Research on FMC analytic algorithm of PBN track transition coding [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 1042-1052. |
[6] | Wanli LI, Jiong LI, Humin LEI. Discussion on neighborhood optimal trajectory online correction algorithm and its application range [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 1053-1062. |
[7] | YI PAN, Sheng ZHANG, Xiao WANG, Manhao LIU, Yiran LUO. A fine acquisition algorithm based on fast three-time FRFT for dynamic and weak GNSS signals [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 259-269. |
[8] | Yue WANG, Fuping SUN, Jinming HAO, Lundong ZHANG, Xian WANG. Evaluation of global navigation satellite system spoofing efficacy [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1238-1257. |
[9] | Xu LYU, Baiqing HU, Yongbin DAI, Mingfang SUN, Yi LIU, Duanyang GAO. Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1079-1088. |
[10] | Bohao LI, Yunjie WU, Guofei LI. Hierarchical reinforcement learning guidance with threat avoidance [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1173-1185. |
[11] | Hang GUO, Zheng WANG, Bin FU, Kang CHEN, Wenxing FU, Jie YAN. Impact angle constrained fuzzy adaptive fault tolerant IGC method for Ski-to-Turn missiles with unsteady aerodynamics and multiple disturbances [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1210-1226. |
[12] | Yangjun GAO, Guangyun LI, Zhiwei LYU, Lundong ZHANG, Zhongpan LI. Improved adaptively robust estimation algorithm for GNSS spoofer considering continuous observation error [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1237-1248. |
[13] | Dong FU, Xiangjun LI, Weihua MOU, Ming MA, Gang OU. Navigation jamming signal recognition based on long short-term memory neural networks [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 835-844. |
[14] | Jing GUI, Heming ZHAO, Xiang XU. Heading constraint algorithm for foot-mounted PNS using low-cost IMU [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 727-736. |
[15] | Shengnan FU, Guanqun ZHOU, Qunli XIA. A trajectory shaping guidance law with field-of-view angle constraint and terminal limits [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 426-437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||