Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (1): 163-177.doi: 10.23919/JSEE.2024.000018
• SYSTEMS ENGINEERING • Previous Articles
Xiaolong XU1,*(), Shuai JIANG2(), Jinbo ZHAO2(), Xinheng WANG3()
Received:
2021-12-16
Online:
2024-02-18
Published:
2024-03-05
Contact:
Xiaolong XU
E-mail:xuxl@njupt.edu.cn;1018041226@njupt.edu.cn;2021070705@njupt.edu.cn;xinheng.wang@uwl.ac.uk
About author:
Supported by:
Xiaolong XU, Shuai JIANG, Jinbo ZHAO, Xinheng WANG. DCEL: classifier fusion model for Android malware detection[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 163-177.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Some static characteristics after APK file characteristics"
Static characteristics | Category |
SEND_SMS | Manifest permission |
READ_PHONE_STATE | Manifest permission |
Ljava.net.URLDecoder | API call signature |
Android.content.pm.Signature | API call signature |
Android.intent.action.PACKAGE_REPLACED | Intent |
Android.intent.action.SEND_MULTIPLE | Intent |
remount | Commands signature |
/system/app | Commands signature |
Table 2
Malware threat level table"
Malware threat level | Threat level | Related attribute |
High risk | A | Transact,onServiceConnected,bindService,SEND_SMS,READ_PHONE_STATE,··· |
Danger | B | WRITE_HISTORY_BOOKMARKS,TelephonyManager.getSubscriberId,WRITE_SYNC_SETTINGS,··· |
Slight danger | C | READ_CALL_LOG,Android.intent.action.PACKAGE_ADDED,ACCESS_NETWORK_STATE,··· |
Ordinary | D | TelephonyManager.getNetworkOperator,Android.intent.action.SENDTO,SET_ALARM,··· |
Safety | E | ACCESS_SURFACE_FLINGER,Android.intent.action.ACTION_POWER_CONNECTED,··· |
Table 3
Network parameters of CNN"
Layer(type) | Output shape | Parameter |
Conv2d_3(Conv2D) | (None, 12, 12, 32) | 320 |
Max_pooling2d_3(MaxPooling2D) | (None, 6, 6, 32) | 0 |
Conv2d_4(Conv2D) | (None, 4, 4, 64) | 18496 |
Max_pooling2d_4(MaxPooling2D) | (None, 2, 2, 64) | 0 |
Flatten_2(Flatten) | (None, 256) | 0 |
Dense_3(Dense) | (None, 512) | 131584 |
Dense_4(Dense) | (None, 1) | 513 |
Table 6
Drebin and Malgenome dataset description"
Type and number of features | Feature |
Manifest Permission(113) | SEND_SMS, READ_SMS, RECEIVE_SMS, READ_PHONE_STATE, WRITE_SMS, ··· |
API call signature(73) | Transact, onServiceConnected, bindService, attachInterface, Ljava.lang.Class.getField, ··· |
Intent(23) | Android.intent.action.BOOT_COMPLETED, Android.intent.action.SEND_MULTIPLE, ··· |
Commands signature(6) | Remount, chown, /system/bin, /system/app, ··· |
Table 7
Comparison between DCEL and traditional machine learning algorithms in terms of accuracy, AUC value and other indicators"
Algorithm | Accuracy | Error rate | Recall rate | Precision | F-measure | AUC | Time/s |
K-means | 0.716994 | 0.283006 | 0.915674 | 0.568259 | 0.701299 | 0.759768 | 0.06 |
DT | 0.979381 | 0.020619 | 0.983820 | 0.983820 | 0.983820 | 0.977703 | 0.03 |
LR | 0.979049 | 0.020951 | 0.985908 | 0.981299 | 0.983598 | 0.976455 | 0.02 |
SVM | 0.977719 | 0.022281 | 0.983299 | 0.981761 | 0.982529 | 0.975609 | 0.03 |
Gaussian NB | 0.708015 | 0.291985 | 0.552192 | 0.981447 | 0.706747 | 0.766930 | 0.1 |
AdaBoost | 0.963086 | 0.036914 | 0.977557 | 0.964967 | 0.971221 | 0.957615 | 0.23 |
RF | 0.983705 | 0.016295 | 0.971586 | 0.983302 | 0.977409 | 0.981096 | 0.31 |
DroidFusion[ | 0.984 | 0.016 | 0.984 | 0.992 | 0.988 | None | None |
DCEL | 0.990772 | 0.009228 | 0.991127 | 0.989578 | 0.990352 | 0.995831 | 0.15 |
Table 8
Comparison of DCEL and a single model in terms of accuracy and other indicators"
Algorithm | Accuracy | Error rate | Recall rate | Precision | F-measure | AUC |
DNN1 | 0.987695 | 0.012305 | 0.989562 | 0.988530 | 0.989045 | 0.984698 |
DNN2 | 0.982042 | 0.017958 | 0.984821 | 0.967544 | 0.976106 | 0.986398 |
CNN | 0.984037 | 0.015963 | 0.973660 | 0.982585 | 0.978102 | 0.992325 |
DECL | 0.990772 | 0.009228 | 0.991127 | 0.989578 | 0.990352 | 0.995831 |
Table 9
Performance comparison between DCEL and other models on the Malgenome dataset"
Algorithm | Accuracy | Error rate | Recall rate | Precision | F-measure | AUC | Time/s |
DNN1 | 0.990789 | 0.009211 | 0.991379 | 0.978723 | 0.985011 | 0.999004 | 0.005 |
DNN2 | 0.989474 | 0.010526 | 0.984127 | 0.984127 | 0.984127 | 0.988126 | 0.011 |
CNN | 0.988158 | 0.011842 | 0.978448 | 0.982684 | 0.980562 | 0.999339 | 0.028 |
DCEL | 0.994737 | 0.005263 | 0.991379 | 0.991379 | 0.991379 | 0.999371 | 0.051 |
1 |
AJMA B, ADDAB C Research-supported mobile applications and internet-based technologies to mediate the psychological effects of infertility: a review. Reproductive BioMedicine Online, 2021, 42 (3): 679- 685.
doi: 10.1016/j.rbmo.2020.12.004 |
2 | ZHANG T, BAI Y, SONG M Y, et al Research on test methods for AI industrial application capabilities of smart mobile terminals. Journal of Computer and Communications, 2021, 9 (12): 106- 115. |
3 | IDC. Smartphone market share. https://www.idc.com/promo/smartphone-market-share/os. |
4 | WANG H Y, LIU Z, LIANG J Y, et al. Beyond google play: a large-scale comparative study of chinese Android app markets. Proc. of the Internet Measurement Conference, 2018: 293−307. |
5 | 360 Lab. 2019 Android malware annual report. http://zt.360.cn/1101061855.php?dtid=1101062360&did=211012248. |
6 |
CEN L, GATES C S, SI L, et al A probabilistic discriminative model for Android malware detection with decompiled source code. IEEE Trans. on Dependable and Secure Computing, 2015, 12 (4): 400- 412.
doi: 10.1109/TDSC.2014.2355839 |
7 |
KOUMARAS H, MAKROPOULOS G, BATISTATOS M, et al 5G-enabled UAVs with command and control software component at the edge for supporting energy efficient opportunistic networks. Energies, 2021, 14 (5): 1480.
doi: 10.3390/en14051480 |
8 | ELAYAN O N, MUSTAFA A M Android malware detection using deep learning. Procedia Computer Science, 2021, 184 (2): 847- 852. |
9 | BAKOUR K, UNVER H M DeepVisDroid: Android malware detection by hybridizing image-based features with deep learning techniques. Neural Computing and Applications, 2021, 33, 11499- 11516. |
10 |
KHARIWAL K, GUPTA R, SINGH J, et al R-MFdroid: Android malware detection using ranked manifest file components. International Journal of Innovative Technology and Exploring Engineering, 2021, 10 (7): 55- 64.
doi: 10.35940/ijitee.G8951.0510721 |
11 | ONWUZURIKE L, MARICONTI E, ANDRIOTIS P, et al MaMaDroid: detecting Android malware by building Markov chains of behavioral models. ACM Transactions on Privacy and Security, 2019, 22 (2): 1- 34. |
12 | MARIN G, CASAS P, CAPDEHOURAT G. Deep in the dark-deep learning-based malware traffic detection without expert knowledge. Proc. of the IEEE Security and Privacy Workshops, 2019: 36−42. |
13 | YERIMA S Y, SEZER S Droidfusion: a novel multilevel classifier fusion approach for Android malware detection. IEEE Trans. on Systems, Man, and Cybernetics, 2019, 49 (2): 453- 466. |
14 | ARP D , SPREITZENBARTH M , HUBNER M, et al. Drebin: effective and explainable detection of Android malware in your pocket. Proc. of the Network and Distributed System Security Symposium, 2014: 23−26. |
15 | ZHOU Y J, JIANG X X Dissecting android malware: characterization and evolution. Proc. of the IEEE Symposium on Security and Privacy, 2012, 95- 109. |
16 | YAO H, WANG Y, YANG Y X Range estimation of few-shot underwater sound source in shallow water based on transfer learning and residual CNN. Journal of Systems Engineering and Electronics, 2023, 34 (4): 839- 850. |
17 | KULEVOME D K B, WANG H, WANG X G Deep neural network based classification of rolling element bearings and health degradation through comprehensive vibration signal analysis. Journal of Systems Engineering and Electronics, 2022, 33 (1): 233- 246. |
18 | LIU X Y, WENG J, ZHANG Y, et al Android malicious application detection based on APK signature information feedback. Journal of Communications, 2017, 38 (5): 190- 198. |
19 | ZHENG M, SUN M S, LUI J C S. DroidAnalytics: a signature based analytic system to collect, extract, analyze and associate android malware. Proc. of the 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 2013: 163−171. |
20 | YAN Y Research on Android malware detection based on permission correlation. Science & Technology, Economy, Market, 2017, (9): 10- 11. |
21 | SATO R, CHIBA D, GOTO S. Detecting Android malware by analyzing manifest files. Proceedings of the Asia Pacific Advanced Network, 2013, 36: 23−31. |
22 |
DU Y, WANG J F, LI Q An Android malware detection approach using community structures of weighted function call graphs. IEEE Access, 2017, 5, 17478- 17486.
doi: 10.1109/ACCESS.2017.2720160 |
23 |
ZHANG J X, QIN Z, ZHANG K H, et al Dalvik opcode graph based Android malware variants detection using global topology features. IEEE Access, 2018, 6, 51964- 51974.
doi: 10.1109/ACCESS.2018.2870534 |
24 | BURGUERA I, ZURUTUZA U, NADJM-TEHRANI S. Crowdroid: behavior-based malware detection system for android. Proc. of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile devices, 2011: 15−26. |
25 |
SINGH A K, WADHWA G, AHUJA M, et al Android malware detection using LSI-based reduced opcode feature vector. Procedia Computer Science, 2020, 173, 291- 298.
doi: 10.1016/j.procs.2020.06.034 |
26 |
ROY A, JAS D S, JAGGI G, et al Android malware detection based on vulnerable feature aggregation. Procedia Computer Science, 2020, 173, 345- 353.
doi: 10.1016/j.procs.2020.06.040 |
27 | UNVER H M, BAKOUR K Android malware detection based on image-based features and machine learning techniques. SN Applied Sciences, 2020, 2, 1299. |
28 | COPTY F, DANOS M, EDELSTEIN O, et al. Accurate malware detection by extreme abstraction. Proc. of the 34th Annual Computer Security Applications Conference, 2018: 101−111. |
29 | MACHIRY A, REDINI N, GUSTAFSON E, et al. Using loops for malware classification resilient to feature-unaware perturbations. Proc. of the 34th Annual Computer Security Applications Conference, 2018: 112−123. |
30 |
KIM T G, KANG B J, RHO M, et al A multimodal deep learning method for android malware detection using various features. IEEE Trans. on Information Forensics and Security, 2019, 14 (3): 773- 788.
doi: 10.1109/TIFS.2018.2866319 |
31 | GUO F H, XU B W, ZHANG W A Training deep neural network for optimal power allocation in islanded microgrid systems: a distributed learning-based approach. IEEE Trans. on Neural Networks and Learning Systems, 2022, 33 (5): 2057- 2069. |
[1] | Yuyuan ZHANG, Wenjun YAN, Limin ZHANG, Qing LING. FOLMS-AMDCNet: an automatic recognition scheme for multiple-antenna OFDM systems [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 307-323. |
[2] | Wei FENG, Yijun LONG, Shuo WANG, Yinghui QUAN. A review of addressing class noise problems of remote sensing classification [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 36-46. |
[3] | Siting LYU, Xiaohui LI, Tao FAN, Jiawen LIU, Mingli SHI. Deep learning for fast channel estimation in millimeter-wave MIMO systems [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1088-1095. |
[4] | Haifen YANG, Hao ZHANG, Houjun WANG, Zhengyang GUO. A novel approach for unlabeled samples in radiation source identification [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 354-359. |
[5] | Tao YE, Zongyang ZHAO, Jun ZHANG, Xinghua CHAI, Fuqiang ZHOU. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853. |
[6] | Zhao SUN, Chao MA, Liang WANG, Ran MENG, Shanshan PEI. A deep learning-based binocular perception system [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 7-20. |
[7] | Hongyin SHI, Yue LIU, Jianwen GUO, Mingxin LIU. ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and keystone transform [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1178-1185. |
[8] | Chuan LIN, Qing CHANG, Xianxu LI. Uplink NOMA signal transmission with convolutional neural networks approach [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 890-898. |
[9] | Liangkui LIN, Shaoyou WANG, Zhongxing TANG. Using deep learning to detect small targets in infrared oversampling images [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952. |
[10] | Chongsheng Zhang, Pengyou Wang, Ke Chen, and Joni-Kristian K¨am¨ ar¨ainen. Identity-aware convolutional neural networks for facial expression recognition [J]. Systems Engineering and Electronics, 2017, 28(4): 784-. |
[11] | Chang Tiantian, Liu Hongwei & Zhou Shuisheng. Large scale classification with local diversity AdaBoost SVM algorithm [J]. Journal of Systems Engineering and Electronics, 2009, 20(6): 1344-1350. |
[12] | Fang Min. Novel ensemble learning based on multiple section distribution in distributed environment [J]. Journal of Systems Engineering and Electronics, 2008, 19(2): 377-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||