1 |
SHETH A, PADHEE S, GYRARD A Knowledge graphs and knowledge networks: the story in brief. IEEE Internet Computing, 2019, 23 (4): 67- 75.
doi: 10.1109/MIC.2019.2928449
|
2 |
PAULHEIM H Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web, 2017, 8 (3): 489- 508.
|
3 |
XUE B C, ZOU L Knowledge graph quality management: a comprehensive survey. IEEE Trans. on Knowledge and Data Engineering, 2023, 35 (5): 4969- 4988.
|
4 |
NOY N, GAO Y Q, JAIN A, et al Industry-scale knowledge graphs: lessons and challenges: five diverse technology companies show how it’s done. Queue, 2019, 17 (2): 48- 75.
doi: 10.1145/3329781.3332266
|
5 |
CAO M L, ZHANG J, XU S Y, et al. Knowledge graphs meet crowdsourcing: a brief survey. Proc. of the International Conference on Cloud Computing, 2020: 3−17.
|
6 |
SIMSEK U, ANGELE K, KARLE E, et al Knowledge graph lifecycle: building and maintaining knowledge graphs. Proc. of the 2nd International Workshop on Knowledge Graph Construction Co-located with the 18th Extended Semantic Web Conference, 2021, 2873.
|
7 |
WANG X Y, CHEN L Z, BAN T Y, et al Knowledge graph quality control: a survey. Fundamental Research, 2021, 1 (5): 607- 626.
doi: 10.1016/j.fmre.2021.09.003
|
8 |
LEE Y W, STRONG D M, KAHN B K, et al AIMQ: a methodology for information quality assessment. Information & Management, 2002, 40 (2): 133- 146.
|
9 |
HOGAN A, GUTIERREZ C, COCHCZ M, et al. Quality Assessment. Cham: Springer International Publishing, 2022.
|
10 |
RYEN V, SOYLU A, ROMAN D Building semantic knowledge graphs from (semi-) structured data: a review. Future Internet, 2022, 14 (5): 129.
doi: 10.3390/fi14050129
|
11 |
ABU-SALIH B Domain-specific knowledge graphs: a survey. Journal of Network and Computer Applications, 2021, 185, 103076.
|
12 |
HUAMAN E. Steps to knowledge graphs quality assessment. https://doi.org/10.48550/arXiv.2208.07779.
|
13 |
ABIAN D, MERONO-PENUELA A, SIMPERL E An analysis of content gaps versus user needs in the wikidata knowledge graph. Proc. of the International Semantic Web Conference, 2022, 354- 374.
|
14 |
GE Z. The future and fintech: ABCDI and beyond. Singapore: World Scientific Publishing Company Inc, 2022.
|
15 |
SIMSEK U, KARLE E, ANGELE K, et al A knowledge graph perspective on knowledge engineering. SN Computer Science, 2022, 4 (1): 16.
doi: 10.1007/s42979-022-01429-x
|
16 |
ZAVERI A, RULA A, MAURINO A, et al Quality assessment for linked data: a survey. Semantic Web, 2016, 7 (1): 63- 93.
|
17 |
RANGANATHAN V, BARBOSA D HOPLoP: multi-hop link prediction over knowledge graph embeddings. World Wide Web, 2022, 25 (2): 1037- 1065.
doi: 10.1007/s11280-021-00972-6
|
18 |
ZHOU Y, CHEN X N, HE B, et al. Re-thinking knowledge graph completion evaluation from an information retrieval perspective. https://arxiv.org/abs/2205.04105.
|
19 |
AMSTERDAMER Y, GASPAR L Interactive knowledge graph querying through examples and facets. Proc. of the European Conference on Advances in Databases and Information Systems, 2022, 201- 211.
|
20 |
HOGAN A, BLOMQVIST E, COCHEA M, et al Knowledge graphs. ACM Computing Surveys, 2021, 54 (4): 1- 37.
|
21 |
FENSEL D, SIMSEK U, ANGELE K, et al. Knowledge graphs. Cham: Springer International Publishing, 2020.
|
22 |
ISSA S, ADEKUNLE O, HAMDI F, et al Knowledge graph completeness: a systematic literature review. IEEE Access, 2021, 9, 31322- 31339.
doi: 10.1109/ACCESS.2021.3056622
|
23 |
MOTRO A Integrity= validity+ completeness. ACM Transaction on Database Systems, 1989, 14 (4): 480- 502.
doi: 10.1145/76902.76904
|
24 |
DARARI F, NUTT W, RAZNIEWSKI S Comparing index structures for completeness reasoning. Proc. of the IEEE International Workshop on Big Data and Information Security, 2018, 49- 56.
|
25 |
GALARRAGA L, RAZNIEWSKI S, AMARILLI A, et al Predicting completeness in knowledge bases. Proc. of the 10th ACM International Conference on Web Search and Data Mining, 2017, 375- 383.
|
26 |
PRASOJO R E, DARARI F, RAZNIEWSKI S, et al. Managing and consuming completeness information for wikidata using COOL-WD. Proc. of the 7th International Workshop on Consuming Linked Data, Co-located with the 15th International Semantic Web Conference. https://ceur-ws.org/Vol-1666/paper-02.pdf.
|
27 |
DRUMMOND N, SHEARER R. The open world assumption. https://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf.
|
28 |
FARBER M, BARTSCHERER F, MENNE C, et al Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web, 2018, 9 (1): 77- 129.
|
29 |
LEVY A Y Obtaining complete answers from incomplete databases. Proc. of the 22nd international Conference on Very Large Data Base Endowment, 1996, 402- 412.
|
30 |
RAZNIEWSKI S, NUTT W Completeness of queries over incomplete databases. Proceeding of the Very Large Data Base Endowment, 2011, 4 (11): 749- 760.
|
31 |
LAJUS J, SUCHANEK F M Are all people married? Determining obligatory attributes in knowledge bases. Proc. of the World Wide Web Conference, 2018, 1115- 1124.
|
32 |
BALARAMAN V, RAZNIEWSKI S, NUTT W Recoin: relative completeness in wikidata. Proc. of the Web Conference, 2018, 1787- 1792.
|
33 |
CAPPIELLO C, NOIA T D, MARCU B A, et al A quality model for linked data exploration. Proc. of the International Conference on Web Engineering, 2016, 397- 404.
|
34 |
WISESA A, DARARI F, KRISNADHI A, et al Wikidata completeness profiling using proWD. Proc. of the 10th International Conference on Knowledge Capture, 2019, 123- 130.
|
35 |
ISSA S, PARIS P H, HAMDI F Assessing the completeness evolution of DBpedia: a case study. Proc. of the International Conference on Conceptual Modeling, 2017, 238- 247.
|
36 |
FURBER C, HEPP M Swiqa–a semantic web information quality assessment framework. Proc. of the European Conference on Information Systems, 2011, 76.
|
37 |
DARARI F, RAZNIEWSKI S, PRASOJO R et al. Enabling fine-grained RDF data completeness assessment. Proc. of the International Conference on Web Engineering, 2016, 170- 187.
|
38 |
LUGGEN M, DIFALLAH D, SARASUA C, et al Non-parametric class completeness estimators for collaborative knowledge graphs—the case of wikidata. Proc. of the International Semantic Web Conference, 2019, 453- 469.
|
39 |
CHERIX D, USBECK R, BOTH A, et al. CROCUS: cluster-based ontology data cleansing. https://ceur-ws.org/Vol-1240/wasabi2014-paper1.pdf.
|
40 |
SOULET A, GIACOMETTI A, MARKHOFF B, et al Representativeness of knowledge bases with the generalized Benford’s law. Proc. of the International Semantic Web Conference, 2018, 374- 390.
|
41 |
NAHARI M K, GHADIRI N, JAFARIFARD Z, et al A framework for linked data fusion and quality assessment. Proc. of the 3rd International Conference on Web Research, 2017, 67- 72.
|
42 |
YAGHOUTI N, KAHANI M, BEHKAMAL B. A metric-driven approach for interlinking assessment of RDF graphs. Proc. of the International Symposium on Computer Science and Software Engineering, 2015. DOI: 10.1109/csicsse.2015.7369244.
|
43 |
THAKKAR H, ENDRIS K M, GIMENEZ-GARCIA J M, et al. Are linked datasets fit for open-domain question answering? A quality assessment. Proc. of the 6th International Conference on Web Intelligence, Mining and Semantics, 2016. DOI: 10.1145/2912845.2912857.
|