Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (1): 105-117.doi: 10.23919/JSEE.2023.000061
• SYSTEMS ENGINEERING • Previous Articles
Huihui HAN(), Jian WANG(), Sen CHEN(), Manting YAN()
Received:
2021-06-21
Online:
2024-02-18
Published:
2024-03-05
Contact:
Huihui HAN
E-mail:hanhuihui@tongji.edu.cn;jwang@tongji.edu.cn;1910067@tongji.edu.cn;2011618@tongji.edu.cn
About author:
Supported by:
Huihui HAN, Jian WANG, Sen CHEN, Manting YAN. Product quality prediction based on RBF optimized by firefly algorithm[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 105-117.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Comparison of RBFFALFM with different data pre-processing methods %"
Method | Accuracy | Precision | Recall | F1-score | ROC_AUC |
LDA + RBFFALFM | 86.48 | 90.16 | 87.90 | 89.01 | 91.97 |
MOGAImp + RBFFALFM | 87.21 | 91.62 | 88.59 | 90.08 | 92.71 |
SMOTE-D + RBFFALFM | 88.41 | 93.08 | 89.35 | 91.38 | 92.79 |
MLPUS + RBFFALFM | 89.45 | 93.17 | 90.82 | 91.98 | 94.47 |
ODEM + RBFFALFM | 91.89 | 96.12 | 92.30 | 94.17 | 96.23 |
Table 3
Comparison of RBF combined with different optimized methods %"
Method | Accuracy | Precision | Recall | F1-score | ROC_AUC |
RBF | 84.65 | 89.19 | 83.32 | 86.15 | 88.99 |
RBF + SSO | 87.63 | 92.15 | 86.14 | 89.04 | 94.71 |
RBF + GA | 88.31 | 94.04 | 88.26 | 91.05 | 92.41 |
RBF + PSO | 88.96 | 92.19 | 89.34 | 90.74 | 94.14 |
RBF + FA | 89.65 | 95.04 | 90.10 | 92.50 | 94.62 |
RBFFALFM | 91.89 | 96.12 | 92.30 | 94.17 | 96.23 |
1 | MAJERNIK M, DANESHJO N, MALEGA P, et al Sustainable development of the intelligent industry from industry 4.0 to industry 5.0. Advances in Science and Technology-Research Journal, 2022, 16 (2): 12- 18. |
2 | CHAUHAN R, YAFI E. Applicability of classifier to discovery knowledge for future prediction modelling. Journal of Ambient Intelligence and Humanized Computing, 2022. DOI: 10.1007/s12652-022-03694-3. |
3 |
ZHANG Q C, YANG L T, CHEN Z K, et al PPHOPCM: privacy-preserving high-order possibilistic c-means algorithm for big data clustering with cloud computing. IEEE Trans. on Big Data, 2022, 8 (1): 25- 34.
doi: 10.1109/TBDATA.2017.2701816 |
4 | DU X P, MA X L, TANG S W, et al A fast algorithm for mining of association rules. Computer Engineering and Application, 2002, 38 (11): 1- 4. |
5 | PACHECO C, ERNST M D Eclat: automatic generation and classification of test inputs. Lecture Notes in Computer Science, 2005, 3586, 504- 527. |
6 |
HAN J W, PEI J, YIN Y W Mining frequent patterns without candidate generation. ACM Sigmod Record, 2000, 29 (2): 1- 12.
doi: 10.1145/335191.335372 |
7 |
MAO J, CHEN D J, ZHANG L Q Mechanical assembly quality prediction method based on state space model. International Journal of Advanced Manufacturing Technology, 2016, 86 (1/4): 107- 116.
doi: 10.1007/s00170-015-8122-y |
8 | YEH C H, FAN Y C, PENG W C. Interpretable multi-task learning for product quality prediction with attention mechanism. Proc. of the IEEE 35th International Conference on Data Engineering, 2019: 1910−1921. |
9 |
YAO L, SHAO W M, GE Z Q Hierarchical quality monitoring for large-scale industrial plants with big process data. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32 (8): 3330- 3341.
doi: 10.1109/TNNLS.2019.2958184 |
10 | YANG F, LI X, BAI J J, et al Nonlinear process quality prediction using wavelet denoising OSC-SVM-PLS. Industrial & Engineering Chemistry Research, 2020, 59 (13): 6021- 6032. |
11 |
REN L, MENG Z H, WANG X K, et al A data-driven approach of product quality prediction for complex production systems. IEEE Trans. on Industrial Informatics, 2021, 17 (9): 6457- 6465.
doi: 10.1109/TII.2020.3001054 |
12 | HU J Y, QIAN X F, PEI J, et al. A novel quality prediction method based on feature selection considering high dimensional product quality data. Journal of Industrial and Management Optimization, 2021. DOI: 10.3934/jimo.2021099. |
13 | THOMSPSON R Radical basis function modelling and prediction of time series. ACS Nano, 1996, 6 (10): 8857- 8867. |
14 | YANG X S. Firefly algorithms for multimodal optimization. Lecture Notes in Computer Science, 2009, 5792: 169−178. |
15 | TANG Y T, DUAN Y Q, WEN J Study on nuclear class piping hanger and support root intelligent selection based on SOM clustering algorithm. Nuclear Power Engineering, 2020, 41 (3): 193- 196. |
16 | ABD EL-MONEIM S, EL-RABAIE ESM, NASSAR M A, et al. Speaker recognition based on pre-processing approaches. International Journal of Speech Technology, 2020, 23(2): 435−442. |
17 |
YAN Y J, WU G X, DONG Y, et al An improved MSR-based data-driven detection method using smoothing pre-processing. IEEE Signal Processing Letters, 2021, 28, 444- 448.
doi: 10.1109/LSP.2021.3058008 |
18 |
WANG S H, CHOU T I, CHIU S W, et al Using a hybrid deep neural network for gas classification. IEEE Sensors Journal, 2021, 21 (5): 6401- 6407.
doi: 10.1109/JSEN.2020.3038304 |
19 | NICKOLAS S, SHOBHA K Efficient pre-processing techniques for improving classifiers performance. Journal of Web Engineering, 2022, 21 (2): 203- 228. |
20 | BEZIN Y, SAMBO B, COSTA J N. Challenges and methodology for pre-processing measured and new rail profiles to efficiently simulate wheel-rail interaction in switches and crossings. Vehicle System Dynamics, 2022. DOI: 10.1080/00423114.2021.2014897. |
21 | BARALDI A, ALPAYDIN E. Constructive feedforward ART clustering networks - Part II. IEEE Trans. on Neural Networks, 2002, 13(3): 662−677. |
22 |
HOU J, QIAO J H, HAN X L Energy-saving clustering routing protocol for wireless sensor networks using fuzzy inference. IEEE Sensors Journal, 2022, 22 (3): 2845- 2857.
doi: 10.1109/JSEN.2021.3132682 |
23 | MZAO L, YUAN C A, QIN X Wireless sensor target tracking algorithm based on improved adaptive clustering. Fire Control & Command Control, 2022, 47 (1): 57- 64. |
24 | KOU L, DING S S, RAO Y, et al. A lightweight intrusion detection model for 5G-enabled industrial internet. Mobile Networks & Applications, 2022. DOI: 10.1007/s11036-021-01891-6. |
25 | HOODA H, VERMA O P. Fuzzy clustering using gravitational search algorithm for brain image segmentation. Multimedia Tools and Applications, 2022. DOI: 10.1007/s11042-022-12336-x. |
26 |
SHAIKH P W, EL-ABD M, GAO K Z A review on swarm intelligence and evolutionary algorithms for solving the traffic signal control problem. IEEE Trans. on Intelligent Transportation Systems, 2022, 23 (1): 48- 63.
doi: 10.1109/TITS.2020.3014296 |
27 | KUMAZAWA T, TAKIMOTO M, KAMBAYASHI Y. Exploration strategies for balancing efficiency and comprehensibility in model checking with ant colony optimization. Journal of Information and Telecommunication, 2022. DOI: 10.1080/24751839.2022.2047470. |
28 | XU X L, YAN F Random walk autonomous groups of particles for particle swarm optimization. Journal of Intelligent & Fuzzy Systems, 2022, 42 (3): 1519- 1545. |
29 |
YUAN M F, KAN X, CHI C H, et al An adaptive simulated annealing and artificial fish swarm algorithm for the optimization of multi-depot express delivery vehicle routing. Intelligent Data Analysis, 2022, 26 (1): 239- 256.
doi: 10.3233/IDA-205693 |
30 | NESHAT M, SEPIDNAM G, SARGOLZAEI M Swallow swarm optimization algorithm: a new method to optimization. Neural Computing & Applications, 2013, 23 (2): 429- 454. |
31 |
RAHUL K, BANYAL R K Firefly algorithm: an optimization solution in big data processing for the healthcare and engineering sector. International Journal of Speech Technology, 2021, 24 (3): 581- 592.
doi: 10.1007/s10772-020-09783-y |
32 | WU Z B, WU L J, XU L Bilateral matching optimization of industrial chain financial products based on 0-1 knapsack strategy and improved discrete particle swarm optimization algorithm. Computer Integrated Manufacturing Systems, 2019, 25 (12): 3279- 3288. |
33 | BHAGAVATHI H, RATHINAVELAYATHAM S, SHANMUGAIAH K, et al. Improved beetle swarm optimization algorithm for energy efficient virtual machine consolidation on cloud environment. Concurrency and Computation-Practice & Experience, 2022. DOI: 10.1002/cpe.6828. |
34 | DUTTA T, DEY S, BHATTACHARYYA S, et al. Quantum fractional order Darwinian particle swarm optimization for hyperspectral multi-level image thresholding. Applied Soft Computing, 2021. DOI: 10.1016/j.asoc.2021.107976. |
35 |
MUKHERJEE S, ASNANI H, LIN E, et al ClusterGAN: latent space clustering in generative adversarial networks. Proc. of the AAAI Conference on Artificial Intelligence, 2019, 33, 4610- 4617.
doi: 10.1609/aaai.v33i01.33014610 |
36 |
LOBATO F, SALES C, ARAUJO I, et al Multi-objective genetic algorithm for missing data imputation. Pattern Recognition Letters, 2015, 68, 126- 131.
doi: 10.1016/j.patrec.2015.08.023 |
37 | TORRES F R, CARRASCO-OCHOA J A, MARTINEZ-TRINIDAD J F, et al SMOTE-D a deterministic version of SMOTE. Lecture Notes in Computer Science, 2016, 9703, 177- 188. |
38 | BABAR V, ADE R. MLP-based undersampling technique for imbalanced learning. Proc. of the International Conference on Automatic Control and Dynamic Optimization Techniques, 2016: 142−147. |
39 | WHITLEY D A genetic algorithm tutorial. Statistics and Computing, 1994, 4 (2): 65- 85. |
40 | VENTER G, JAROSLAW S S Particle swarm optimization. AIAA Journal, 2003, 41 (8): 129- 132. |
[1] | Fan WANG, Pengfei FAN, Yonghua FAN, Bin XU, Jie YAN. Robust adaptive control of hypersonic vehicle considering inlet unstart [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 188-196. |
[2] | Zhifei XI, An XU, Yingxin KOU, Zhanwu LI, Aiwu YANG. Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 498-516. |
[3] | Yang LI, Mingyong LIU, Xiaojian ZHANG, Xingguang PENG. Global approximation based adaptive RBF neural network control for supercavitating vehicles [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 797-804. |
[4] | Li Zhou, Shumin Fei, and Changsheng Jiang. Adaptive integral dynamic surface control based on fully tuned radial basis function neural network [J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 1072-1078. |
[5] | Zeng Delu, Zhou Zhiheng & Xie Shengli. Construction of compact RBF network by refining coarse clusters and widths? [J]. Journal of Systems Engineering and Electronics, 2009, 20(6): 1309-1315. |
[6] | Xue Yali & Jiang Changsheng. Trajectory linearization control of an aerospace vehicle based on RBF neural network [J]. Journal of Systems Engineering and Electronics, 2008, 19(4): 799-805. |
[7] | Zhang Chunmei, Liu Heping, Chen Shujin & Wang Fangjun. Application of neural networks for permanent magnet synchronous motor direct torque control [J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 555-561. |
[8] | Ren Haipeng & Liu Ding. Synchronization of chaos using radial basis functions neural networks [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 83-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||