1 |
YE L C, ZHANG G F, YOU Z, et al. A 2D resonant MEME scanner with an ultracompact wedge-like multiplied angle amplification for miniature LIDAR application. Proc. of the IEEE Conference on Sensors, 2016. DOI: 10.1109/ICSENS.2016.7808932.
|
2 |
YU Y, LIU B, CHEN Z, et al Photon counting LIDAR based on true random coding. Sensors, 2020, 20 (11): 3331- 3338.
doi: 10.3390/s20113331
|
3 |
RAFAELA B S, SOUZA-FILHO P W M, SIMARD M, et al Improving mangrove above-ground biomass estimates using LiDAR. Estuarine, Coastal and Shelf Science, 2020, 236, 106585.
doi: 10.1016/j.ecss.2020.106585
|
4 |
KIM S G, JUNG S H, YING X, et al A 1.8 Gb/s/ch 10 mw/ch −23dB crosstalk eight-channel transimpedance amplifier array for LADAR systems. Proc. of the International SOC Design Conference, 2013, 115- 118.
|
5 |
NGO T H, KIM C H, KWON Y J, et al Wideband receiver for a three-dimensional ranging LADAR system. IEEE Trans. on Circuits and Systems, 2013, 60 (2): 448- 456.
doi: 10.1109/TCSI.2012.2215800
|
6 |
SUDHAKAR P, SHEELA K A, SATYANARAYANA M. Imaging lidar system for night vision and surveillance applications. Proc. of the 4th International Conference on Advanced Computing and Communication Systems, 2017. DOI: 10.1109/ICACCS.2017.8014690.
|
7 |
KURTTI S, NISSINEN J, KOSTAMOVAARA J A wide dynamic range CMOS laser radar receiver with a time-domain walk error compensation scheme. IEEE Trans. on Circuits and Systems, 2017, 64 (3): 550- 561.
doi: 10.1109/TCSI.2016.2619762
|
8 |
CHEN J D, HO H L, TSAY H L, et al 3D chaos lidar system with a pulsed master oscillator power amplifier scheme. Optics Express, 2021, 29 (17): 27871- 27881.
doi: 10.1364/OE.433036
|
9 |
STROTKSMP M, ELSEN F, LHRING J, et al Two stage innoslab amplifier for energy scaling from 100 to >500mJ for future LIDAR applications. Applied Optics, 2017, 56 (10): 2886- 2892.
doi: 10.1364/AO.56.002886
|
10 |
ZHU Y D, YANG J X, ZHANG X X, et al Performance improvement of spaceborne carbon dioxide detection IPDA LIDAR using linearty optimized amplifier of photo-detector. Remote Sensing, 2021, 13 (10): 2007.
|
11 |
HONG C, KIM S H, KIM J H, et al A linear-mode LiDAR sensor using a multi-channel CMOS transimpedance amplifier array. IEEE Trans. on Sensors, 2018, 18 (17): 7032- 7040.
doi: 10.1109/JSEN.2018.2852794
|
12 |
RUOTSALAINEN T, PALOJARVI P, KOSTAMOVAARA J A wide dynamic range receiver channel for a pulsed time-of-flight laser radar. Journal of Solid-State Circuits, 2001, 36 (8): 1228- 1238.
doi: 10.1109/4.938373
|
13 |
NICLASS C, SOGA M, MATSUBARA H, et al A 0.18µm CMOS SOC for a 100-m-range 10-frame/s 200×96-pixel time-of-flight depth sensor. IEEE Journal of Solid-State Circuits, 2014, 49 (1): 315- 330.
|
14 |
ZAND B, PHANG K, JOHNS D A A transimpedance amplifer with DC-coupled differential photodiode current sensing for wireless optical communications. Proc. of the IEEE Custom Intergrated Circuits Conferencs, 2001, 455- 458.
|
15 |
CHO H S, KIM C H, LEE S G A high-sensitivity and low-walk error LADAR receiver for military application. IEEE Trans. on Circuits and Systems, 2014, 61 (10): 3007- 3015.
doi: 10.1109/TCSI.2014.2327282
|
16 |
ZHOU Y X, ZHAO Y, YANG J A broadband AGC transimpedance amplifier for automotive LiDAR. Microelectronics, 2019, 49 (6): 755- 759.
|
17 |
WANG X Y, MA R, LI D A low walk error analog front-end circuit with intensity compensation for direct ToF LiDAR. IEEE Trans. on Circuits and Systems I: Regular Papers, 2020, 67 (12): 4309- 4321.
|
18 |
CHENG L, RUI B, SHAFIK A, et al Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 2014, 49 (6): 1419- 1436.
doi: 10.1109/JSSC.2014.2321574
|
19 |
TSAI C M A 40 mW 3 Gb/s self-compensated differential transimpedance amplifier with enlarged input capacitance tolerance in 0. 18µm CMOS technology. IEEE Journal of Solid-State Circuits, 2009, 44 (10): 2671- 2677.
|
20 |
YANG Y X, GAO J B, SONG H Z et. al. Near-infrared array receiver for real-time 3D imaging application. Proc. of the 4th Optoelectronics Global Conference, 2019, 89- 93.
|
21 |
LIU R Q, JIANG Y, JIANG C H, et al Amplifying circuit interface model for lidar signal processing system. Journal of Electronics & Information Technology, 2020, 42 (7): 1636- 1642.
|
22 |
HAO Z, RUI M, LIU M, et al A linear dynamic range receiver with timing discrimination for pulsed TOF imaging LADAR application. IEEE Trans. on Instrumentation and Measurement, 2018, 67 (11): 2684- 2691.
doi: 10.1109/TIM.2018.2826860
|
23 |
MA R, LIU M, ZHENG H, et al A 77 dB dynamic range low power variable-gain transimpedance amplifier for linear LADAR. IEEE Journal of Circuits and Systems, 2018, 65 (2): 171- 175.
|