Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (6): 1626-1644.doi: 10.23919/JSEE.2023.000020
• SYSTEMS ENGINEERING • Previous Articles
Chi HAN1,*(), Wei XIONG1,2(), Minghui XIONG1(), Zhen LIU1()
Received:
2021-03-22
Online:
2023-12-18
Published:
2023-12-29
Contact:
Chi HAN
E-mail:15850466132@163.com;13331094335@163.com;xtkxxmh@163.com;2981282863@qq.com
About author:
Supported by:
Chi HAN, Wei XIONG, Minghui XIONG, Zhen LIU. Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system[J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1626-1644.
Table 1
Comparison algorithm and description"
Algorithm | Description |
PSO | Standard particle swarm algorithm |
GWO | Standard gray wolf algorithm |
MFO | Moth-flame optimization algorithm [ |
ALO | Ant lion optimizer [ |
SCA | Sine cosine algorithm [ |
WOA | Whale optimization algorithm [ |
MVO | Multi-verse optimizer [ |
IGWO | Hybrid improved gray wolf algorithm |
Table 2
Benchmark function"
Function | Definition | Dimension | Range | Optimum |
f1 | 30 | [−100,100] | 0 | |
f2 | 30 | [−10,10] | 0 | |
f3 | 30 | [−100,100] | 0 | |
f4 | 30 | [−100,100] | 0 | |
f5 | 30 | [−30,30] | 0 | |
f6 | 30 | [−100,100] | 0 | |
f7 | 30 | [−1.28,1.28] | 0 | |
f8 | 30 | [−500,500] | −418.9829×5 | |
f9 | 30 | [−5.12,5.12] | 0 | |
f10 | 30 | [−32,32] | 0 | |
f11 | 30 | [−600,600] | 0 | |
f12 | 2 | [−5,5] | −1.0316 | |
f13 | 2 | [−5,5] | 0.398 | |
f14 | 2 | [−2,2] | 3 |
Table 3
Comparison of experimental result"
Function | Item | PSO | MVO | MFO | ALO | SCA | WOA | GWO | IGWO |
f1 | Average | 1.01e-04 | 1.73e-33 | 6.37e-28 | 8.94e-28 | 3.96e-39 | 2.54e-46 | 1.32e-39 | 1.11e-73 |
Std. | 1.54e-04 | 2.09e-33 | 9.30e-28 | 9.38e-28 | 4.74e-39 | 4.64e-46 | 8.71e-40 | 2.81e-73 | |
Time | 0.0043 | 0.0083 | 0.0209 | 0.0195 | 0.0183 | 0.0184 | 0.0117 | 0.0158 | |
f2 | Average | 1.99e-02 | 4.93e-20 | 1.40e-16 | 1.04e-16 | 1.48e-23 | 4.14e-28 | 1.42e-23 | 9.23e-52 |
Std. | 1.65e-02 | 2.53e-20 | 9.89e-17 | 6.48e-17 | 9.76e-24 | 2.45e-28 | 1.25e-23 | 1.54e-51 | |
Time | 0.0056 | 0.0067 | 0.0131 | 0.0127 | 0.0106 | 0.0105 | 0.0065 | 0.0072 | |
f3 | Average | 67.3020 | 5.14e-06 | 4.88e-06 | 7.04e-06 | 2.20e-08 | 5.25e-07 | 1.29e-08 | 7.67e-11 |
Std. | 35.1326 | 1.48e-05 | 5.13e-06 | 1.42e-05 | 5.98e-08 | 3.56e-07 | 2.94e-08 | 1.12e-10 | |
Time | 0.0347 | 0.0393 | 0.0428 | 0.0406 | 0.0395 | 0.0397 | 0.0416 | 0.0297 | |
f4 | Average | 1.0974 | 3.01e-08 | 5.57e-07 | 8.44e-07 | 1.85e-10 | 7.26e-07 | 3.07e-10 | 6.11e-12 |
Std. | 0.2795 | 3.39e-08 | 4.32e-07 | 8.08e-07 | 1.64e-10 | 3.97e-07 | 3.65e-10 | 7.81e-12 | |
Time | 0.0044 | 0.0062 | 0.0119 | 0.0094 | 0.0095 | 0.0171 | 0.0056 | 0.0094 | |
f5 | Average | 1.45e-06 | 1.76e-14 | 7.65e-08 | 4.46e-05 | 6.74e-14 | 7.64e-15 | 7.99e-15 | 0 |
Std. | 3.19e-04 | 3.37e-15 | 8.56e-07 | 2.24e-05 | 8.47e-15 | 1.12e-15 | 0 | 0 | |
Time | 0.0043 | 0.0094 | 0.0154 | 0.0141 | 0.0157 | 0.0094 | 0.0117 | 0.0115 | |
f6 | Average | 3.47e-01 | 6.56e-04 | 7.14e-01 | 1.1476 | 4.99e-01 | 6.74e-01 | 7.23e-01 | 1.52e-04 |
Std. | 2.39e-01 | 3.82e-04 | 4.26e-01 | 2.52e-01 | 4.56e-01 | 1.68e-01 | 2.52e-01 | 1.56e-04 | |
Time | 0.0098 | 1.1535 | 0.0118 | 0.0121 | 0.0095 | 0.0094 | 0.0094 | 0.0056 | |
f7 | Average | 1.76e-01 | 1.34e-03 | 2.14e-03 | 1.79e-03 | 1.29e-03 | 1.02e-03 | 9.65e-04 | 2.25e-04 |
Std. | 4.95e-02 | 6.84e-04 | 1.02e-03 | 8.44e-04 | 7.00e-04 | 4.84e-04 | 8.85e-04 | 2.10e-04 | |
Time | 0.0103 | 0.0157 | 0.0184 | 0.0156 | 0.0157 | 0.0163 | 0.018 | 0.0119 | |
f8 | Average | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 |
Std. | 3.58e-02 | 4.28e-05 | 7.79e-06 | 8.65e-06 | 2.08e-06 | 5.71e-06 | 0 | 0 | |
Time | 0.0275 | 0.0247 | 0.0247 | 0.0234 | 0.0332 | 0.0230 | 0.0276 | 0.0277 | |
f9 | Average | 52.4065 | 1.0366 | 2.0143 | 1.6277 | 5.68e-15 | 1.7677 | 0 | 0 |
Std. | 9.2906 | 2.0276 | 3.5410 | 2.4442 | 1.80e-14 | 3.7301 | 0 | 0 | |
Time | 0.0065 | 0.0119 | 0.0146 | 0.0123 | 0.0122 | 0.0121 | 0.0136 | 0.0062 | |
f10 | Average | 1.03e-01 | 3.61e-14 | 1.07e-13 | 1.06e-13 | 1.26e-14 | 1.51e-14 | 1.40e-14 | 3.73e-15 |
Std. | 2.91e-01 | 3.53e-15 | 2.16e-14 | 1.94e-14 | 2.92e-15 | 1.67e-15 | 4.12e-15 | 2.80e-15 | |
Time | 0.0077 | 0.0107 | 0.0139 | 0.0119 | 0.0108 | 0.0108 | 0.0136 | 0.0071 | |
f11 | Average | 6.18e-03 | 6.94e-03 | 2.99e-03 | 1.09e-03 | 0 | 2.65e-03 | 2.32e-03 | 0 |
Std. | 7.37e-03 | 1.29e-02 | 9.45e-03 | 3.47e-03 | 0 | 5.73e-03 | 7.35e-03 | 0 | |
Time | 0.007 | 0.0118 | 0.0143 | 0.0124 | 0.0117 | 0.012 | 0.0145 | 0.0083 | |
f12 | Average | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 | −1.0316 |
Std. | 0 | 8.74e-08 | 6.28e-07 | 3.47e-08 | 1.35e-07 | 1.16e-04 | 5.47e-09 | 0 | |
Time | 0.0283 | 0.0273 | 0.0244 | 0.0289 | 0.0284 | 0.0287 | 0.0232 | 0.0083 | |
f13 | Average | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 | 0.3979 |
Std. | 6.67e-04 | 4.93e-07 | 7.67e-06 | 1.75e-04 | 5.24e-05 | 0 | 5.24e-05 | 0 | |
Time | 0.0085 | 0.0066 | 0.0069 | 0.0069 | 0.0068 | 0.0069 | 0.0069 | 0.0069 | |
f14 | Average | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 |
Std. | 2.81e-05 | 1.97e-05 | 2.91e-05 | 4.71e-05 | 1.57e-05 | 7.44e-06 | 3.72e-05 | 4.90e-16 | |
Time | 0.0084 | 0.0065 | 0.0065 | 0.0066 | 0.0065 | 0.0065 | 0.0065 | 0.0065 |
Table 5
Initial parameter setting of IGWO-SVR and other methods"
Method | Parameter item | Value |
SVR | SVR parameters | (2,1,0.01) |
IGWO-SVR | Number of search agents | 30 |
Maximum iterations | 500 | |
Minimum of SVR parameters | (1e−4,1e−4,0) | |
Maximum of SVR parameters | (100,100,1) | |
BPNN | Number of neurons in input layer | 6 |
Number of neurons in output layer | 1 | |
Number of neurons in hidden layer | 10 | |
Learning efficiency | 0.1 | |
Error limitation | 0.001 | |
GWO-SVR | Number of search agents | 30 |
Maximum iterations | 500 | |
Minimum of SVR parameters | (1e−4,1e−4,0) | |
Maximum of SVR parameters | (100,100,1) |
Table 6
Prediction accuracy results for all data of each method"
Dataset | SVR | IGWO-SVR | BPNN | GWO-SVR | |||||||
Average | Std. | Average | Std. | Average | Std. | Average | Std. | ||||
a | 1.70e-01 | 6.19e-02 | 4.62e-02 | 3.50e-03 | 3.05e-01 | 6.05e-02 | 1.10e-01 | 7.19e-02 | |||
b | 5.48e-02 | 1.61e-02 | 1.18e-03 | 5.80e-04 | 4.27e-02 | 5.00e-03 | 1.90e-02 | 9.10e-03 | |||
c | 8.62e-02 | 2.71e-02 | 7.60e-03 | 1.20e-05 | 1.26e-02 | 1.00e-03 | 1.06e-02 | 3.70e-03 | |||
d | 8.70e-03 | 8.30e-03 | 6.10e-05 | 5.08e-04 | 1.78e-02 | 2.60e-03 | 6.80e-03 | 8.19e-04 | |||
e | 1.26e-02 | 2.20e-03 | 2.80e-03 | 2.98e-05 | 1.90e-02 | 5.80e-03 | 1.28e-02 | 1.90e-03 | |||
f | 3.06e-02 | 2.39e-02 | 7.50e-04 | 2.30e-03 | 7.08e-02 | 1.75e-01 | 1.63e-02 | 1.13e-02 | |||
g | 3.54e-01 | 1.65e-01 | 1.58e-01 | 2.78e-02 | 7.99e-01 | 2.72e-01 | 4.26e-01 | 6.73e-02 | |||
h | 2.42e-02 | 9.70e-03 | 1.19e-02 | 2.60e-04 | 3.31e-02 | 9.00e-03 | 4.64e-02 | 3.41e-02 |
Table 8
P values of IGWO-SVR against other methods using Wilcoxon’s statistical test (bolded if P>α=5%)"
Dataset | IGWO-SVR vs SVR | IGWO-SVR vs GWO-SVR | IGWO-SVR vs BPNN |
a | 6.16e-05 | 1.40e-02 | 5.93e-04 |
b | 2.43e-05 | 2.54e-02 | 6.73e-03 |
c | 1.68e-05 | 3.93e-01 | 1.19e-01 |
d | 6.42e-05 | 3.68e-01 | 1.00e-03 |
e | 6.42e-05 | 7.82e-04 | 8.52e-04 |
f | 1.59e-05 | 5.25e-02 | 1.73e-01 |
g | 4.57e-05 | 5.67e-05 | 2.64e-03 |
h | 6.28e-05 | 2.46e-04 | 2.46e-04 |
Table 9
Orbital parameters of satellite constellations degree (°)"
Number | Semimajor axis | Eccentricity | Inclination | Argument of perigee | RAAN | True anomaly |
LEO1-1/2/3 | 500 | 0 | 45.0000 | 0 | 0 | 0/120/240 |
LEO2-4/5/6 | 500 | 0 | 45.1092 | 0 | 89.8898 | 30.16/150.16/270.16 |
LEO3-7/8/9 | 500 | 0 | 44.9991 | 0 | 179.7800 | 60.31/180.31/300.31 |
LEO4-10/11/12 | 500 | 0 | 44.8897 | 0 | 269.8910 | 90.16/210.16/330.16 |
Table 10
Structure of sample data"
Number | x1 | x2 | x3 | x4 | x5 | x6 | Effectiveness |
1 | 0.6178 | 0.3803 | 0.6533 | 0.9490 | 0.3588 | 0.9987 | 2.0857 |
2 | 0.1863 | 0.9098 | 0.1747 | 0.9041 | 0.1193 | 0.1645 | 1.4126 |
3 | 0.0778 | 0.8667 | 0.1018 | 0.7284 | 0.0658 | 0.2526 | 1.3586 |
4 | 0.0725 | 0.8922 | 0.0898 | 0.5634 | 0.0491 | 0.4394 | 1.5264 |
320 | 0.7231 | 0.6378 | 0.7099 | 0.4211 | 0.4412 | 0.1644 | 1.5644 |
1 | LI Z, ZHOU J W, HU H B, et al Operational effectiveness analysis of cluster submarine formation torpedo weapon system based on fuzzy ahp comprehensive evaluation. ACM Transaction on Intelligent Systems and Technology, 2019, 2 (3): 17- 21. |
2 | XIAO E, QI C J Model construction of efficiency evaluation of family farms by DEA. Journal of Interdisciplinary Mathematics, 2015, 18 (5): 307- 320. |
3 | SHAO R R, FANG Z G G-BDP-ADC model for effectiveness evaluation of low orbit satellite communication system in the context of poor information. IEEE Access, 2019, 7 (2): 157489- 1575057. |
4 | WEI X, LIU X X Efficiency evaluation research of missile weapon system based on the ADC mode. Advances in Engineering Research, 2016, 180 (2): 1227- 1236. |
5 | PENG C, LU F X, XING C F Damage assessment simulation of high energy laser weapon. Proc. of the International Conference on Intelligent Human Machine Systems and Cybernetics, 2017, 191- 196. |
6 | CHENG B, JIANG J, TAN Y J A novel approach for WSoS capability requirement satisfactory degree evaluation using evidential reasoning. System Engineering Theory and Practice, 2011, 31 (11): 2210- 2216. |
7 | YANN L, YOSHUA B, GEOFFREY H Deep learning. Nature, 2015, 521 (2): 436- 444. |
8 | ZHAO Q S, HU W T, XIA B Y, et al The capability spaces complexity measure method of weapon system of systems. Proc. of the IEEE International Systems Conference, 2020, 291- 297. |
9 | LI X X, CHEN H, LI D Combat effectiveness prediction model using elman feedback network. Journal of System Simulation, 2015, 27 (1): 43- 49. |
10 | LI W W, SHI Q, SIBTAIN M, et al A hybrid forecasting model for short-term power load based on sample entropy two-phase decomposition and whale algorithm optimized support vector regression. IEEE Access, 2020, 8 (1): 166907- 166921. |
11 | REN J, HU X F, ZHU F Effectiveness prediction of weapon equipment system based on stacked auto-encoding. Military Operations Research and System Engineering, 2017, 31 (1): 61- 67. |
12 | CHENG K, CHE X M, ZHANG H J Evaluation method of operational effectiveness based on support vector machine. Systems Engineering and Electronics, 2011, 33 (5): 1055- 1058. |
13 | CUI P F, YAN H S Operational effectiveness evaluation of weapon under influence of marine environment based on v-SVR. Computer Technology and Development, 2012, 22 (8): 20- 24. |
14 | LI S, FANG H J, LIU X Y Parameter optimization of support vector regression based on sine cosine algorithm. Expert System, 2018, 91 (2): 63- 77. |
15 | RUI J, ZHANG H B, ZHANG D L, et al Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization. Journal of Petroleum Science and Engineering, 2019, 180 (3): 699- 706. |
16 |
KAZEM A, SHARIFI E, HUSSAIN F K Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Applied Soft Computing, 2013, 13 (2): 947- 958.
doi: 10.1016/j.asoc.2012.09.024 |
17 |
AMROUNE M, MUSIRIN I, BOUKTIR T The amalgamation of SVR and ANFIS models with synchronized phasor measurements for on-line voltage stability assessment. Energies, 2017, 10 (11): 1693- 1711.
doi: 10.3390/en10111693 |
18 | ROUSHANGAR K, KOOSHEH A Evaluation of GA-SVR method for modeling bed load transport in gravel-bed rivers. Journal of Hydrology, 2015, 527 (11): 1142- 1152. |
19 | FAN J K, HU Q, TANG Z Z Predicting vacant parking space availability: an SVR method with fruit fly optimization. IET Intelligent Transport Systems, 2018, 12 (10): 1414- 1420. |
20 | MIRJALILI S, MIRJALILI S M, LEWIS A Grey wolf optimizer. Advances in Engineering Software, 2014, 69 (3): 46- 61. |
21 | LI K, CHENG G Y, SUN X D, et al A nonlinear flux linkage model for bearingless induction motor based on GWO-LSSVM. IEEE Access, 2019, 7 (2): 36558- 36567. |
22 | HATTA N M, ZAIN A M, SALLEHUDDIN R, et al Recent studies on optimization method of grey wolf optimizer (GWO): a review (2014−2017). Artificial Intelligence Review, 2018, 18 (2): 1- 33. |
23 | MITTAL N, SINGH U B, SOHI B S Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence & Soft Computing, 2016, 5 (1): 1- 16. |
24 | JIANG F, PENG Z J, HE J Q Short-term load forecasting based on support vector regression with improved grey wolf optimizer. Proc. of the 10th International Conference on Advanced Computational Intelligence, 2018, 807- 812. |
25 | ZHANG M J, LONG D Y, WANG X, et al Improved grey wolf algorithm based on nonlinear control parameter strategy. Proc. of the Chinese Automation Congress, 2019, 4651- 4656. |
26 | WANG X F, ZHAO H, HAN T, et al A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem. Applied Soft Computing, 2019, 78 (1): 240- 260. |
27 | HEIDARI A A, PAHLAVANI P An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Applied Soft Computing, 2017, 60 (5): 115- 134. |
28 | CAO W D, LIU X, NI J Parameter optimization of support vector regression using henry gas solubility optimization algorithm. IEEE Access, 2020, 8 (1): 88633- 88642. |
29 | HANG S, LUO Q F, ZHOU Y Q Hybrid grey wolf optimizer using elite opposition-based learning strategy and simplex method. International Journal of Computational Intelligence and Applications, 2017, 16 (2): 1750012. |
30 | VAPNIK V N An overview of statistical learning theory. IEEE Trans. on Neural Networks, 1999, 10 (5): 988- 999. |
31 | FENG Z K, LIU S, NIU W J, et al Optimal operation of hydropower system by improved grey wolf optimizer based on elite mutation and quasi-oppositional learning. IEEE Access, 2019, 7 (5): 155513- 155529. |
32 | LEI J S, CHEN J F, CAO X T The regression prediction analysis of grouting concretion stone ’s strength based on SVR. Advanced Materials Research, 2013, 859 (11): 171- 176. |
33 | ARMAGHANI D J, KOOPIALIPOOR M, BAHRI M A SVR-GWO technique to minimize flyrock distance resulting from blasting. Bulletin of Engineering Geology and the Environment, 2020, 79 (6): 4369- 4385. |
34 | WANG Z, YANG C, OH S K, et al Robust multi-linear fuzzy SVR designed with the aid of fuzzy C-means clustering based on insensitive data information. IEEE Access, 2020, 8 (12): 184997- 185011. |
35 | ZHU S L, SUN J N, LIU Y F, et al The air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in China. Chemosphere, 2020, 252 (11): 126474. |
36 | BESSEDIK S A, DJEKIDEL R, AMEUR A Performance of different kernel functions for LS-SVM-GWO to estimate flashover voltage of polluted insulators. IET Science Measurement & Technology, 2018, 12 (6): 739- 745. |
37 | XU L W, WANG H, LIN W, et al GWO-BP neural network based OP performance prediction for mobile multiuser communication networks. IEEE Access, 2019, 7 (15): 152690- 152700. |
38 |
ZHU S L, QIU X L, YIN Y R Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting. Atmospheric Pollution Research, 2019, 10 (4): 1326- 1335.
doi: 10.1016/j.apr.2019.03.004 |
39 | SINGH N, SINGH S B A novel hybrid GWO-SCA approach for optimization problems. Engineering Science and Technology, 2017, 20 (12): 1586- 1601. |
40 | NEGI G, KUMAR A, PANT S, et al GWO: a review and applications. International Journal of System Assurance Engineering and Management, 2021, 12 (1): 1- 8. |
41 | MIRJALILI S Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge Based Systems, 2015, 89, 228- 249. |
42 | SIMPSON A R The ant lion optimizer. Advances in Engineering Software, 2015, 8 (3): 80- 98. |
43 | SEYEDALI M SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based Systems, 2016, 96, 120- 133. |
44 | LEWIS A, PAREJO J A The whale optimization algorithm. Advances in Engineering Software, 2016, 9 (5): 51- 67. |
45 | HATAMLOU A, ZHOU A, QU B Y Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 2015, 2 (7): 495- 513. |
46 | LIU Y W, FAN S S, FENG Y, et al Stockbridge damper identification of overhead power lines based on HOG feature and GWO-SVM. Proc. of the IEEE 3rd Conference on Energy Internet and Energy System Integration, 2019, 2466- 2470. |
47 | HAN C, XIONG W Related information ming of space reconnaissance equipment system index. Journal of System Simulation, 2021, 33 (10): 2372- 2380. |
48 | YU Z, SHI X Z, ZHOU J, et al Prediction of blast-induced rock movement during bench blasting: use of gray wolf optimizer and support vector regression. Natural Resources Research, 2019, 29 (7): 843- 865. |
49 |
LI W D, ZHANG J An innovated integrated model using singular spectrum analysis and support vector regression optimized by intelligent algorithm for rainfall forecasting. Journal of Autonomous Intelligence, 2019, 2 (1): 46- 55.
doi: 10.32629/jai.v2i1.37 |
50 | LI B, LUO C Y, WANG Z Y Application of GWO-SVM algorithm in arc detection of pantograph. IEEE Access, 2020, 8, 173865- 173873. |
51 |
ZHU A J, XU C P, LI Z, et al Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. Journal of Systems Engineering and Electronics, 2015, 26 (2): 317- 328.
doi: 10.1109/JSEE.2015.00037 |
52 |
HU Q, ZHANG S G, YU M, et al Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. on Sustainable Energy, 2016, 7 (1): 241- 249.
doi: 10.1109/TSTE.2015.2480245 |
[1] | Ziwei ZHANG, Qisheng GUO, Zhiming DONG, Hongxiang LIU, Ang GAO, Pengcheng QI. Operational effectiveness evaluation based on the reduced conjunctive belief rule base [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1161-1172. |
[2] | Yuan ZENG, Wenbin LU, Bo YU, Shifei TAO, Haosu ZHOU, Yu CHEN. Improved IMM algorithm based on support vector regression for UAV tracking [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 867-876. |
[3] | Wanping SONG, Zengqiang CHEN, Mingwei SUN, Qinglin SUN. Reinforcement learning based parameter optimization of active disturbance rejection control for autonomous underwater vehicle [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 170-179. |
[4] | Jian'gang PENG, Mingzhou LIU, Xi ZHANG, Lin LING. Hybrid heuristic algorithm for multi-objective scheduling problem [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 327-342. |
[5] | Qian WANG, Chuanding ZHANG, Deyong XIAN. Multi-channel signal parameters joint optimization for GNSS terminals [J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 39-47. |
[6] | Kangsheng Dong, Hanqiao Huang, Changqiang Huang, and Zhuoran Zhang. Trajectory online optimization for unmanned combat aerial vehicle using combined strategy [J]. Systems Engineering and Electronics, 2017, 28(5): 963-970. |
[7] | Zilong Cheng, Li Fan, and Yulin Zhang. A framework for equipment systems-of-systems effectiveness evaluation using parallel experiments approach [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 292-300. |
[8] | Guo Wei, Xudong Yu, and Xingwu Long. Novel approach for identifying Z-axis drift of RLG based on GA-SVR model [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 115-121. |
[9] | Min Zhu, Chunling Yang, and Weiliang Li. Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model [J]. Journal of Systems Engineering and Electronics, 2013, 24(5): 828-837. |
[10] | Yi Lin1, Shaoming Zhang, Jianqing Cai, and Nico Sneeuw. Application of wavelet support vector regression on SAR data de-noising [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 579-586. |
[11] | Zheng Yongkang, Chen Weirong, Dai Chaohua & Wang Weibo. Stochastic focusing search: a novel optimization algorithm for real-parameter optimization [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 869-876. |
[12] | Xia Qunli, Guo Tao & Qi Zaikang. Study of trajectory optimization using terminal-node adaptive-altered spline algorithm [J]. Journal of Systems Engineering and Electronics, 2009, 20(3): 551-557. |
[13] | Gu Hui & Song Bifeng. Study on effectiveness evaluation of weapon systems based on grey relational analysis and TOPSIS [J]. Journal of Systems Engineering and Electronics, 2009, 20(1): 106-111. |
[14] | Chen Jun, Gao Xiaoguang & Ding Lin. Design and operation strategies of the system for destroying time-sensitive target based on system effectiveness [J]. Journal of Systems Engineering and Electronics, 2008, 19(6): 1151-1156. |
[15] | Li Zhisheng, Li Junshan, Feng Fan & Zhao Xin. Self-organizing fuzzy clustering neural network and application to electronic countermeasures effectiveness evaluation [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 119-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||