Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (5): 1359-1367.doi: 10.23919/JSEE.2023.000129
• Reliability • Previous Articles Next Articles
Xue LEI1(), Ningyun LU1,2,*(), Chuang CHEN1,3(), Tianzhen HU1(), Bin JIANG1,2()
Received:
2021-08-16
Online:
2023-10-18
Published:
2023-10-30
Contact:
Ningyun LU
E-mail:leixue@nuaa.edu.cn;luningyun@nuaa.edu.cn;chenchuang@nuaa.edu.cn;hutianzhen@nuaa.edu.cn;binjiang@nuaa.edu.cn
About author:
Supported by:
Xue LEI, Ningyun LU, Chuang CHEN, Tianzhen HU, Bin JIANG. Attention mechanism based multi-scale feature extraction of bearing fault diagnosis[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1359-1367.
Table 1
Introduction of bearing dataset"
Speed varying conditions | Bearing health condition | Label | Training dataset | Testing dataset |
IS | Healthy | 1 | 10 500 | 4 500 |
Inner race fault | 2 | 10 500 | 4 500 | |
Outer race fault | 3 | 10 500 | 4 500 | |
DS | Healthy | 4 | 10 500 | 4 500 |
Inner race fault | 5 | 10 500 | 4 500 | |
Outer race fault | 6 | 10 500 | 4 500 | |
IDS | Healthy | 7 | 10 500 | 4 500 |
Inner race fault | 8 | 10 500 | 4 500 | |
Outer race fault | 9 | 10 500 | 4 500 | |
DIS | Healthy | 10 | 10 500 | 4 500 |
Inner race fault | 11 | 10 500 | 4 500 | |
Outer race fault | 12 | 10 500 | 4 500 |
Table 3
Fault diagnosis results"
Method | Speed varying condition | ||||||||||
Increasing speed | Decreasing speed | Increasing then decreasing speed | Combo time-varying rotational speed conditions | ||||||||
Average accuracy/% | Standard deviation | Average accuracy/% | Standard deviation | Average accuracy/% | Standard deviation | Average accuracy/% | Standard deviation | ||||
Multi-scale DBN | 98.73 | 0.153 | 99.041 | 0.178 | 99.886 | 0.083 | 96.593 | 0.515 | |||
Single-scale DBN | 96.48 | 0.749 | 93.131 | 0.190 | 92.739 | 0.693 | 89.177 | 0.527 | |||
SVM | 92.77 | 0.190 | 90.986 | 3.673 | 90.082 | 2.118 | 85.368 | 2.861 | |||
BPNN | 84.79 | 2.341 | 89.499 | 2.413 | 87.717 | 3.231 | 85.202 | 3.588 | |||
PNN | 86.13 | 1.390 | 91.686 | 1.817 | 91.517 | 1.611 | 81.900 | 2.366 |
1 |
NANDI S, TOLIYAT H A, LI X D Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans. on Energy Conversion, 2005, 20 (4): 719- 729.
doi: 10.1109/TEC.2005.847955 |
2 |
MOSHREFZADEH A Condition monitoring and intelligent diagnosis of rolling element bearings under constant/variable load and speed conditions. Mechanical Systems and Signal Processing, 2021, 149, 107153.
doi: 10.1016/j.ymssp.2020.107153 |
3 | WANG B, LEI Y G, LI N, et al Multi-scale convolutional attention network for predicting remaining useful life of machinery. IEEE Trans. on Industrial Electronics, 2020, 68 (8): 7496- 7504. |
4 | WANG C S, LUN Y, CHEN Y H, et al. A data-driven aero-engine degradation prognostic strategy. IEEE Trans. on Cybernetics, 2021, 51(3): 1531−1541. |
5 |
LEI Y G, YANG B, JIANG X W, et al Applications of machine learning to machine fault diagnosis: a review and roadmap. Mechanical Systems and Signal Processing, 2020, 138, 106587.
doi: 10.1016/j.ymssp.2019.106587 |
6 | LI X, JIA X D, ZHANG W, et al Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation. Neurocomputing, 2020, 383 (28): 235- 247. |
7 | CHEN Y H, PENG G L, ZHU Z Y, et al A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Applied Soft Computing, 2019, 86, 105919. |
8 |
PATHIRAGE C S N, LI J, LI L, et al Application of deep autoencoder model for structural condition monitoring. Journal of Systems Engineering and Electronics, 2018, 29 (4): 873- 880.
doi: 10.21629/JSEE.2018.04.22 |
9 | CHEN H T, JIANG B, LU N Y Probability-relevant incipient fault detection and diagnosis methodology with applications to electric drive systems. IEEE Trans. on Control Systems Technology, 2018, 27 (6): 2766- 2773. |
10 | LI Y, ZIO E, LU N Y, et al Joint distribution-based test selection for fault detection and isolation under multiple faults condition. IEEE Trans. on Instrumentation and Measurement, 2020, 70, 1- 13. |
11 |
CHEN C, LU N Y, JIANG B, et al Condition-based maintenance optimization for continuously monitored degrading systems under imperfect maintenance actions. Journal of Systems Engineering and Electronics, 2020, 31 (4): 841- 851.
doi: 10.23919/JSEE.2020.000057 |
12 | JAVED K, GOURIVEAU R, ZERHOUNI N, et al Enabling health monitoring approach based on vibration data for accurate prognostics. IEEE Trans. on Industrial Electronics, 2014, 62 (1): 647- 656. |
13 |
NIU G X, WANG X, GOLDA M, et al An optimized adaptive PReLU-DBN for rolling element bearing fault diagnosis. Neurocomputing, 2021, 445, 26- 34.
doi: 10.1016/j.neucom.2021.02.078 |
14 | LI X Q, JIANG H K, WANG R X, et al Rolling bearing fault diagnosis using optimal ensemble deep transfer network. Knowledge-Based Systems, 2020, 213, 106695. |
15 |
NASIRI A, TAHERI-GARAVAND A, OMID M, et al Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images. Applied Thermal Engineering, 2019, 163, 114410.
doi: 10.1016/j.applthermaleng.2019.114410 |
16 |
AZAMFAR M, LI X, LEE J Intelligent ball screw fault diagnosis using a deep domain adaptation methodology. Mechanism and Machine Theory, 2020, 151, 103932.
doi: 10.1016/j.mechmachtheory.2020.103932 |
17 |
YANG Z B, ZHANG J P, ZHAO Z B, et al Interpreting network knowledge with attention mechanism for bearing fault diagnosis. Applied Soft Computing, 2020, 97, 106829.
doi: 10.1016/j.asoc.2020.106829 |
18 |
JIAO J Y, ZHAO M, LIN J, et al A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing, 2020, 417, 36- 63.
doi: 10.1016/j.neucom.2020.07.088 |
19 |
LI C, ZHANG S H, QIN Y, et al A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing, 2020, 407, 121- 135.
doi: 10.1016/j.neucom.2020.04.045 |
20 |
WANG Y R, SUN G D, JIN Q Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network. Applied Soft Computing, 2020, 92, 106333.
doi: 10.1016/j.asoc.2020.106333 |
21 |
IRFAN M, SAAD N, IBRAHIM R, et al An intelligent fault diagnosis of induction motors in an arbitrary noisy environment. Journal of Nondestructive Evaluation, 2016, 35 (1): 1- 13.
doi: 10.1007/s10921-015-0318-4 |
22 | HINTONG E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504−507. |
23 |
ZHONG T, QU J F, FANG X Y, et al The intermittent fault diagnosis of analog circuits based on EEMD-DBN. Neurocomputing, 2021, 436, 74- 91.
doi: 10.1016/j.neucom.2021.01.001 |
24 |
LIU K, WU J K, LIU H B, et al Reliability analysis of thermal error model based on DBN and Monte Carlo method. Mechanical Systems and Signal Processing, 2021, 146, 107020.
doi: 10.1016/j.ymssp.2020.107020 |
25 |
PAN Y B, HONG R G, CHEN J, et al A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox. Renewable Energy, 2020, 152, 138- 154.
doi: 10.1016/j.renene.2020.01.042 |
26 | HU Q, SI X S, ZHANG Q H, et al A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests. Mechanical Systems and Signal Processing, 2020, 139, 106609.1- 106609.22. |
27 |
XU Z F, LI C, YANG Y Fault diagnosis of rolling bearings using an improved multi-scale convolutional neural network with feature attention mechanism. ISA Transactions, 2021, 110, 379- 393.
doi: 10.1016/j.isatra.2020.10.054 |
28 | JIANG J R, LEE J E, ZENG Y M. Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life. Sensors, 2019, 20(1): 166. |
29 |
LI X, ZHANG W, DING Q Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism. Signal Processing, 2019, 161, 136- 154.
doi: 10.1016/j.sigpro.2019.03.019 |
30 |
JIE H, LI S, GANG S, et al Squeeze-and-excitation networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372 |
31 | HUANG H, BADDOUR N, LIANG M Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction. Journal of Sound & Vibration, 2018, 414, 43- 60. |
[1] | Tingting WEI, Weilin YUAN, Junren LUO, Wanpeng ZHANG, Lina LU. VLCA: vision-language aligning model with cross-modal attention for bilingual remote sensing image captioning [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 9-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||