Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (5): 1333-1342.doi: 10.23919/JSEE.2023.000112
• Control Theory and Application • Previous Articles Next Articles
Haijian XUE1(), Tao WANG1,*(), Xinghui CAI1(), Jintao WANG1(), Fei LIU2()
Received:
2022-04-01
Online:
2023-10-18
Published:
2023-10-30
Contact:
Tao WANG
E-mail:xhaijian2012@126.com;wtao009@163.com;281474061@qq.com;wangjintaolove@126.com;536758423@qq.com
About author:
Supported by:
Haijian XUE, Tao WANG, Xinghui CAI, Jintao WANG, Fei LIU. Anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1333-1342.
1 | TITTERTON D H, WESTON J L. Strapdown inertial navigation technology. 2nd ed. London: The Institution of Engineering and Technology, 2004. |
2 |
CHANG L B, LI J S, CHEN S Y Initial alignment by attitude estimation for strapdown inertial navigation systems. IEEE Trans. on Instrumentation and Measurement, 2015, 64 (3): 784- 794.
doi: 10.1109/TIM.2014.2355652 |
3 |
ALI J, USHAQ M A consistent and robust Kalman filter design in-motion of inertial navigation system. Measurement, 2009, 42, 577- 582.
doi: 10.1016/j.measurement.2008.10.002 |
4 |
SILSAON, PETER M G Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci. IEEE Trans. on Instrumentation and Measurement, 2011, 60 (6): 1930- 1941.
doi: 10.1109/TIM.2011.2113131 |
5 |
WU Y X, ZHANG H L, WU M P, et al Observability of strapdown INS alignment: a global perspective. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (1): 78- 102.
doi: 10.1109/TAES.2012.6129622 |
6 | BEN Y Y, SUN Y, WANG X Y, et al Method of coarse alignment during voyages of vessel SINS aided by satellites. Systems Engineering and Electronics, 2018, 40 (12): 2797- 2803. |
7 |
JIANG C F, WAN D J A fast initial alignment method for strapdown inertial navigation system on stationary base. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32 (4): 1501- 1504.
doi: 10.1109/7.543871 |
8 | SCHIMELEVICH J, NAOR R. New approach to coarse alignment. Proc. of the IEEE Position Location and Navigation Symposium, 1996: 324−327 |
9 | EL-SHEIMY N, NASSAR S Wavelet de-noising for IMU alignment. IEEE Trans. on Aerospace and Electronic Systems, 2004, 40 (10): 32- 39. |
10 | GU D, EL-SHEIMY N, HASSAN T, et al. Coarse alignment for marine SINS using gravity in the inertial frame as a reference. Proc. of the IEEE/ION Postition, Location and Navigation Symposium, 2008: 961−965. |
11 | XU Z H, ZHOU Z F, CHANG Z J Initial alignment method based on information reuse and algorithm fusion. Systems Engineering and Electronics, 2021, 43 (5): 1310- 1315. |
12 |
WU Y X, PAN X F Velocity/position integration formula part I: application to in-flight coarse alignment. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49 (2): 1006- 1023.
doi: 10.1109/TAES.2013.6494395 |
13 | WANG Z W, QIN JQ, YANG G L, et al Analytical method for moving base initial alignment based on gravity measurement. Journal of Vibration and Shock, 2018, 37 (3): 143- 146. |
14 | JAMES R Three-axis attitude determination methods. Spacecraft Attitude Determination and Control, 1978, 73, 410- 435. |
15 |
SHUSTER M D, OH S D Three-axis attitude determination from vector observations. Journal of Guidance, Control and dynamics, 1981, 4 (1): 70- 77.
doi: 10.2514/3.19717 |
16 |
BAR-ITZHACK I Y, HARMAN R R Optimized TRIAD algorithm for attitude determination. Journal of Guidance, Control and Dynamics, 1997, 20 (1): 208- 221.
doi: 10.2514/2.4025 |
17 | WAHBA G A least squares estimate of spacecraft attitude. SIAM Review, 1965, 7 (3): 409- 411. |
18 | SHUSTER M D. Approximate algorithms for fast optimal attitude computation. Proc. of the AIAA Guidance and Control Conference, 1978: 7−9. |
19 |
WU M P, WU Y X, HU X P, et al Optimization-based alignment for inertial navigation systems: theory and algorithm. Aerospace Science and Technology, 2011, 15 (1): 1- 17.
doi: 10.1016/j.ast.2010.05.004 |
20 |
LI J S, XU J N, CHANG L B, et al An improved optimal method for initial alignment. The Journal of Navigation, 2014, 67, 727- 736.
doi: 10.1017/S0373463314000198 |
21 | GUO Y S, FU M Y, DENG Z H, et al Application of quaternion estimator algorithm dedicated on alignment of swaying and moving carrier. Journal of Chinese Inertial Technology, 2017, 25 (2): 182- 185. |
22 | YAN G M, LI S J, GAO W S, et al An improvement for SINS anti-rocking alignment under geographic latitude uncertainty. Journal of Chinese Inertial Technology, 2020, 28 (2): 141- 146. |
23 |
SAVEGE P G Strapdown inertial navigation integration algorithm design part 1: attitude algorithms. Journal of Guidance, Control and Dynamics, 1998, 21 (1): 19- 28.
doi: 10.2514/2.4228 |
24 |
SAVEGE P G Strapdown inertial navigation integration algorithm design part 2: velocity and position algorithms. Journal of Guidance, Control and Dynamics, 1998, 21 (2): 208- 221.
doi: 10.2514/2.4242 |
25 |
WU Y X, HU D W, WU M P, et al Observability analysis of rotation estimation by fusing inertial and line-based visual information: a revisit. Automatica, 2006, 42 (10): 1809- 1812.
doi: 10.1016/j.automatica.2006.05.005 |
26 | NADLER A, BAR-ITZHACK, HAIM W. On algorithms for attitude estimation using GPS. Proc. of the 39th IEEE Conference on Decision and Control, 2000. DOI: 10.1109/CDC.2000.912212. |
27 |
PANUSKA V A new form of the extended Kalman filter for parameter estimation in linear systems with correlated noise. IEEE Trans. on Automatic Control, 1980, 25 (2): 229- 235.
doi: 10.1109/TAC.1980.1102269 |
28 |
JANKOVIC M S Exact nth derivatives of eigenvalues and eigenvectors. Journal of Guidance, Control and Dynamics, 1994, 17 (1): 136- 144.
doi: 10.2514/3.21170 |
[1] | Xiaolin NING, Weiping YUAN, Yanhong LIU. A tightly coupled rotational SINS/CNS integrated navigation method for aircraft [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 770-782. |
[2] | Gongmin Yan, Xi Sun, Jun Weng, Qi Zhou, and Yongyuan Qin. Time-asynchrony identification between inertial sensors in SIMU [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 346-352. |
[3] | Tong Zhang, Kang Chen, Wenxing Fu, Yunfeng Yu, and Jie Yan. Optimal two-iteration sculling compensation mathematical framework for SINS velocity updating [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1065-1071. |
[4] | Yu Chen and Yan Zhao*. New rapid transfer alignment method for SINS of airborne weapon systems [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 281-287. |
[5] | Jingshuo Xu, Yongjun Wang, and Zhicai Xiao. Rapid transfer alignment for SINS of carrier craft [J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 303-308. |
[6] | Weiren Wu, Xiaolin Ning, and Lingling Liu. New celestial assisted INS initial alignment method for lunar explorer [J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 108-117. |
[7] | Wei Sun and Feng Sun. Novel approach to GPS/SINS integration for IMU alignment [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 513-518. |
[8] | Qian Weixing, Liu Jianye, Zhao Wei & Zhu Yanhua. Novel method of improving the alignment accuracy of SINS on revolving mounting base [J]. Journal of Systems Engineering and Electronics, 2009, 20(5): 1052-1057. |
[9] | Zhang Shibing & Zhang Lijun. Anti-interference ultra-wideband system based on spreading and interleaving [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 236-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||