Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (5): 1235-1251.doi: 10.23919/JSEE.2023.000062
• Systems Engineering • Previous Articles Next Articles
Lei XIE1(), Shangqin TANG1(), Zhenglei WEI2,*(), Yongbo XUAN3(), Xiaofei WANG3()
Received:
2021-02-24
Online:
2023-10-18
Published:
2023-10-30
Contact:
Zhenglei WEI
E-mail:310370487@qq.com;630909448@qq.com;zhenglei_wei@126.com;398791736@qq.com;wxf825421673@163.com
About author:
Supported by:
Lei XIE, Shangqin TANG, Zhenglei WEI, Yongbo XUAN, Xiaofei WANG. UCAV situation assessment method based on C-LSHADE-Means and SAE-LVQ[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1235-1251.
Table 1
Algorithm parameter settings"
Algorithm | Parameter setting |
LSHADE | H=3, MF=0.5, pinit=0.11, Ninit=200, Nmin=150, D=2 |
CoBiDE | pb=0.4, ps=0.5, D=2 |
DE | F=0.5, Cr=0.5, D=2 |
SSA | Leader position update probability=0.5 |
PSO | C1=1.5, C2=1.5, D=2, Inertia factor=0.3 |
HHO | |
GWO | a=2−2t/tmax |
GSA | α=20, G0=100, Rnorm=2, Rpower=1 |
Table 2
Cluster evaluation index"
Index | Formula | Description |
Ac | | |
Sil | | |
DB | | DB represents the proportion of cluster scatter between cluster separation. |
CH | | |
Table 3
Clustering algorithm parameter settings"
Number | Algorithm | Parameter setting |
1 | DPC | Reference [ |
2 | FCM | The index of the membership matrix is 2, the maximum number of iterations is 200, and the minimum membership is 1.0e−5 |
3 | GMM | The non-negative regularization number is 1.0e−5 |
4 | CLA | Reference [ |
5 | LGC | Reference [ |
6 | K-means | Use Euclidean distance, the number of clusters is 4 |
7 | GBK-Means | Reference [ |
8 | C-LSHADE-Means | Use Euclidean distance, the number of clusters is 4, the maximum number of iterations is 200, CR=0.5,F=0.5, the initial population is 200, and the minimum population is 150 |
Table 4
Clustering results"
Data | Index | DPC | FCM | GMM | CLA | GLA | K-means | CBK-Means | C-LSHADE-Means |
UCI Data | Ac/% | 63.24 | 74.57 | 80.35 | 84.1 | 84.2 | 75.43 | 77.43 | 86.86 |
DB | 0.6584 | 0.7850 | 0.7701 | 0.635 | 0.635 | 0.7627 | 0.750 | 0.7526 | |
CH | 237.3047 | 339.5852 | 283.9508 | 336.248 | 336.249 | 340.2413 | 286.260 | 340.2610 | |
Sil | 0.2468 | 0.4160 | 0.4084 | 0.402 | 0.410 | 0.4192 | 0.383 | 0.4348 | |
Rank | 8/8 | 3/8 | 5/8 | 6/8 | 4/8 | 2/8 | 7/8 | 1/8 |
Table 5
Network parameter settings"
Algorithm | Parameter setting |
HSVM | H=2, C=100, |
CSA-HSVM | Fl=2.5, AP=0.1, iter=100, NP=20, C=100, |
KNN | K=4 |
LVQ | |
SAE-HSVM | Number_AE=2,H=2, C=100, |
SAE-LVQ | Number_AE=2, |
Table 6
Comparison of performance indexes"
Classifier | Mean (SD) | ||||
Accuracy/% | RMSE | MAPE/% | Kappa | Time | |
HSVM | 86.704(4.29e−01) | 0.1208 (1.12e−02) | 4.0262(4.61e−01) | 0.7912 (6.4e−03) | 9.183e−05 (1.862e−05) |
LVQ | 94.663(2.81e−01) | 0.0468 (4.3e−03) | 2.6607(1.95e−01) | 0.9113 (4.7e−03) | 3.412e−05 (3.247e−06) |
CSA-SVM | 94.10(7.43e−01) | 0.062 (9.7e−03) | 4.681(4.56e−01) | 0.904 (1.20e−02) | 3.16e−04 (7.34e−04) |
KNN | 88.015(6.13e−01) | 0.055 (1.27e−02) | 6.99(7.43e−01) | 0.804 (1.74e−02) | 7.674e−05 (5.152e−05) |
SAe−HSVM | 96.910(2.81e−01) | 0.0356 (5.8e−03) | 2.1223(5.49e−01) | 0.9486 (4.6e−03) | 4.435e−04 (6.882e−07) |
SAe−LVQ | 99.251(1.62e−01) | 0.0037 (1.6e−03) | 0.5384(1.46e−01) | 0.9876 (2.7e−3) | 1.024e−04 (1.292e−05) |
1 | LUNSFORD I, BRADLEY T H Evaluation of unmanned aerial vehicle tactics through the metrics of survivability. Journal of Defense Modeling and Simulation-Applications Methodology Technology, 2021, 19 (4): 855- 864. |
2 | DONG Y Q, AI J L, LIU J Q Guidance and control for own aircraft in the autonomous air combat: a historical review and future prospects. Journal of Aerospace Engineering, 2019, 133 (16): 5943- 5991. |
3 |
YANG K B, DONG W H, CAI M, et al UCAV air combat maneuver decisions based on a proximal policy optimization algorithm with situation reward shaping. Electronics, 2022, 11 (16): 2602.
doi: 10.3390/electronics11162602 |
4 | FU L, CHANG F H, XU J, et al. Research of air combat situation assessment method. Proc. of the International Conference on Digital Manufacturing & Automation, 2012. DOI: 10.1109/ICDMA.2012.155. |
5 | ZHAO K X, HUANG C Q. Air combat situation assessment for UAV based on improved decision tree. Proc. of the 30th Chinese Control and Decision Conference, 2018. DOI: 10.1109/CCDC.2018.8407414. |
6 |
ZHANG H P, HUANG C Q Maneuver decision-making of deep learning for UCAV thorough azimuth angles. IEEE Access, 2020, 8, 12976- 12987.
doi: 10.1109/ACCESS.2020.2966237 |
7 | ZHANG C K, CHENG Y, HE Z Q, et al. Method of dynamic air combat threat evaluation based on time series. Proc. of the 35th Chinese Control Conference, 2016. DOI:10.1109/ChiCC.2016.7554892. |
8 |
YING Z, TANG Y C, ZHAO X Z Novel uncertainty management approach for air combat situation assessment based on improved belief entropy. Entropy, 2019, 21 (5): 495- 506.
doi: 10.3390/e21050495 |
9 | XU X M, YANG R N, FU Y. Situation assessment for air combat based on novel semi-supervised naive Bayes. Journal of Systems Engineering and Electronics, 2018, 29(4): 768−779. |
10 | LU C G, ZHOU Z L, LIU H Q, et al. Situation assessment of far-distance attack air combat based on mixed dynamic bayesian networks. Proc. of the 37th Chinese Control Conference, 2018. DOI: 10.23919/ChiCC.2018.8483074. |
11 | HE X M, ZU W, CHANG H X, et al. Autonomous maneuvering decision research of UAV based on experience knowledge representation. Proc. of the Chinese Control and Decision Conference, 2016. DOI: 10.1109/CCDC.2016.7530973. |
12 |
XUAN Y B, HUANG C Q, LI W X Air combat situation assessment by gray fuzzy Bayesian network. Applied Mechanics and Materials, 2011, 69, 114- 119.
doi: 10.4028/www.scientific.net/AMM.69.114 |
13 | SUN Z L, YANG H W, HU W D, et al. Situation assessment for air combat based on the Bayesian networks technology. Proceedings of SPIE - The International Society for Optical Engineering, 2006. DOI: 10.1117/12.657673. |
14 | NARAYANA R P, SUDESH K K, GIRIJA G, et al. Situation and threat assessment in BVR combat. Proc. of the AIAA Guidance, Navigation & Control Conference, 2011. DOI: 10.2514/6.2011-6241. |
15 | MA S D, YANG G Q, ZHANG H Z, et al. Target threat level assessment technology based on cloud model and Bayesian revision in air combat simulation. Proc. of the 35th Chinese Control Conference, 2016. DOI: 10.1109/ChiCC.2016.7554903. |
16 |
VIRTANEN K, RAIVIO T Modeling pilot ’s sequential maneuvering decisions by a multistage influence diagram. Journal of Guidance, Control, and Dynamics, 2004, 27 (4): 665- 677.
doi: 10.2514/1.11167 |
17 |
KAI V, JANE K, TUOMAS R Modeling air combat by a moving horizon influence diagram game. Journal of Guidance, Control, and Dynamics, 2006, 29 (5): 1080- 1091.
doi: 10.2514/1.17168 |
18 |
ALAM S, DOBBIE G, KOH Y S, et al Research on particle swarm optimization-based clustering: a systematic review of literature and techniques. Swarm and Evolutionary Computation, 2014, 17, 1- 13.
doi: 10.1016/j.swevo.2014.02.001 |
19 | NANDA S J, PANDA G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation, 2014, 16: 1−18. |
20 |
JOSE G A, GOMEZ F W Automatic clustering using nature-inspired metaheuristics: a survey. Applied Soft Computing, 2016, 41, 192- 213.
doi: 10.1016/j.asoc.2015.12.001 |
21 |
HRUSCHK E R, CAMPELLO R J G B, FREITAS A A, et al A survey of evolutionary algorithms for clustering. IEEE Trans. on Systems, Man, and Cybernetics: Part C (Applications and Reviews), 2009, 39 (2): 133- 155.
doi: 10.1109/TSMCC.2008.2007252 |
22 |
INKAYA T, KAYALGIL S, ZDEMIREL N E Ant colony optimization-based clustering methodology. Applied Soft Computing, 2015, 28, 301- 311.
doi: 10.1016/j.asoc.2014.11.060 |
23 |
REFAAT M M, ALEEM S H E A, ATIA Y, et al Multi-stage dynamic transmission network expansion planning using LSHADE-SPACMA. Applied Sciences, 2021, 11 (5): 2155.
doi: 10.3390/app11052155 |
24 | MOHAMED A W, HADI A A, FATTOUH A M, et al. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. Proc. of the IEEE Congress on Evolutionary Computation, 2017. DOI: 10.1109/CEC.2017.7969307. |
25 |
ZHANG J Q, SANDERSON A C JADE: adaptive differential evolution with optional external archive. IEEE Trans. on Evolutionary Computation, 2009, 13 (5): 945- 958.
doi: 10.1109/TEVC.2009.2014613 |
26 | ELLIACKIN F, MARIANA M, HUGO V S, et al. Swarm intelligence for clustering—a systematic review with new perspectives on data mining. Engineering Applications of Artificial Intelligence, 2019, 82: 313−329. |
27 |
BRUSCO M J, STEINLEY D A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 2007, 72 (4): 583- 600.
doi: 10.1007/s11336-007-9013-4 |
28 | WANG Y, LI H X, HUANG T W, et al Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Applied Soft Computing Journal, 2014, 18 (1): 232- 247. |
29 |
STORN R Differential evolution—a simple and efficient heuristic for global optimization over continuous space. Journal of Global Optimization, 1997, 11, 341- 359.
doi: 10.1023/A:1008202821328 |
30 | XUE J K, SHEN B A novel swarm intelligence optimization approach: sparrow search algorithm. Systems Science & Control Engineering, 2020, 8 (1): 22- 34. |
31 | LI X G, ZHU J, SHI H R, et al Surface defect detection of seals based on k-means clustering slgorithm and particle swarm optimization. Scientific Programming, 2021, 2021, 3965247. |
32 | HEIDARI A A, SEYEDALI M, HOSSAM F, et al Harris hawks optimization: algorithm and applications. Future Generation Computer Systems, 2019, 97 (12): 849- 872. |
33 |
KOHLI M, ARORA S Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering, 2018, 5 (4): 458- 472.
doi: 10.1016/j.jcde.2017.02.005 |
34 |
ESMAT R, HOSSEIN N, SAEID S GSA: a gravitational search algorithm. Information Sciences, 2009, 179 (13): 2232- 2248.
doi: 10.1016/j.ins.2009.03.004 |
35 | HANCER E, KARABOGA D. A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number. Swarm and Evolutionary Computation, 2017, 32: 49−67. |
36 | GAO J, ZHAO L, CHEN Z K, et al. ICFS: an improved fast search and find of density peaks clustering algorithm. Proc. of the 14th International Conference on Dependable, Autonomic and Secure Computing, 2016. DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.103. |
37 | WANG Z Q, YU Z W, CHEN C L P, et al Clustering by local gravitation. IEEE Trans. on Cybernetics, 2017, 48 (5): 1383- 1396. |
38 |
REZAEE M J, ESHKEVARI M, SABERI M, et al GBK-means clustering algorithm: an improvement to the K-means algorithm based on the bargaining game. Knowledge-Based Systems, 2021, 213, 106672.
doi: 10.1016/j.knosys.2020.106672 |
39 | ZHANG Z R. Research on key technologies of autonomous close-range air combat for unmanned combat aircraft. Xi’an: Air Force Engineering University, 2019. (in Chinese) |
40 |
TAN S X An intrusion detection method based on stacked autoencoder and support vector machine. Journal of Physics: Conference Series, 2020, 1453 (1): 012010- 012016.
doi: 10.1088/1742-6596/1453/1/012010 |
41 |
ZABALZA J, REN J C, ZHENG J B, et al Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing, 2016, 185, 1- 10.
doi: 10.1016/j.neucom.2015.11.044 |
42 |
LU X T, WANG H, DONG W S, et al Learning a deep vector quantization network for image compression. IEEE Access, 2019, 7, 118815- 118825.
doi: 10.1109/ACCESS.2019.2934731 |
43 |
KAYAMA M, SUGITA Y, MOROOKA Y Sensor diagnosis system combining immune network and learning vector quantization. Electrical Engineering in Japan, 1996, 117 (5): 44- 56.
doi: 10.1002/eej.4391170505 |
44 | LIU J Y, LIANG Y C, SUN X Y. Application of learning vector quantization network in fault diagnosis of power transformer. Proc. of the International Conference on Mechatronics & Automation, 2009. DOI: 10.1109/ICMA.2009.5246676. |
45 | TANG F Z, TINO P, YU H B. Generalized learning vector quantization with log-Euclidean metric learning on symmetric positive-definite manifold. IEEE Trans. on Cybernetics, 2022. DOI: 10.1109/TCYB.2022.3178412. |
46 |
ZHANG X Y, QIU D Y, CHEN F Support vector machine with parameter optimization by a novel hybrid method and its application to fault diagnosis. Neurocomputing, 2015, 149, 641- 651.
doi: 10.1016/j.neucom.2014.08.010 |
47 | WANG L T, ZHANG J X, ZHANG J H, et al Application of crow search algorithm in SVM parameter optimization. Computer Engineering and Applications, 2019, 55 (21): 213- 218. |
48 |
MAITY A, PRAKASAM P, BHARGAVA S Machine learning based KNN classifier: towards robust, efficient DTMF tone detection for a noisy environment. Multimedia Tools and Applications, 2021, 80 (19): 29765- 29784.
doi: 10.1007/s11042-021-11194-3 |
[1] | Yasong LUO, Jianghu XU, Chengxu FENG, Kun ZHANG. An accurate detection algorithm for time backtracked projectile-induced water columns based on the improved YOLO network [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 981-991. |
[2] | Hao FENG, Jianzhong WU, Lu ZHANG, Mingsheng LIAO. Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 896-906. |
[3] | Jinfeng LYU, Fucai LIU, Yaxue REN. Fuzzy identification of nonlinear dynamic system based on selection of important input variables [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 737-747. |
[4] | Zhongxiang CHANG, Zhongbao ZHOU, Feng YAO, Xiaolu LIU. Observation scheduling problem for AEOS with a comprehensive task clustering [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 347-364. |
[5] | Xuhao GUI, Junfeng ZHANG, Zihan PENG. Trajectory clustering for arrival aircraft via new trajectory representation [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 473-486. |
[6] | Zhifei XI, An XU, Yingxin KOU, Zhanwu LI, Aiwu YANG. Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 498-516. |
[7] | Pengcheng GUO, Zheng LIU, Jingjing WANG. Radar group target recognition based on HRRPs and weighted mean shift clustering [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1152-1159. |
[8] | Aref YELGHI, Cemal KÖSE, Asef YELGHI, Amir SHAHKAR. Automatic fuzzy-DBSCAN algorithm for morphological and overlapping datasets [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1245-1253. |
[9] | Yue LI, Xiaohui QIU, Xiaodong LIU, Qunli XIA. Deep reinforcement learning and its application in autonomous fitting optimization for attack areas of UCAVs [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 734-742. |
[10] | Gaofeng WU, Kaifang WAN, Xiaoguang GAO, Xiaowei FU. Placement of unmanned aerial vehicles as communication relays in two-tiered multi-agent system: clustering based methods [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 231-242. |
[11] | Xiaolong XU, Wen CHEN, Yanfei SUN. Over-sampling algorithm for imbalanced data classification [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1182-1191. |
[12] | Mengfan XUE, NLei HA, Dongliang PENG. A combined algorithm of K-means and MTRL for multi-class classification [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 875-885. |
[13] | Jiayun CHANG, Xiongjun FU, Wen JIANG, Min XIE. Wideband radar detector based on characteristic parameters of echoes [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 897-904. |
[14] | Xinglin SHEN, Zhiyong SONG, Hongqi FAN, Qiang FU. Fast density peak-based clustering algorithm for multiple extended target tracking [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 435-447. |
[15] | Zhiqiang JIAO, Peiyang YAO, Jieyong ZHANG, Yun ZHONG, Xun WANG. MAV/UAV task coalition phased-formation method [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 402-414. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||