Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (5): 1211-1224.doi: 10.23919/JSEE.2023.000128
• Systems Engineering • Previous Articles Next Articles
Yaozhong ZHANG1,*(), Zhuoran WU1(), Zhenkai XIONG2(), Long CHEN3()
Received:
2021-11-12
Online:
2023-10-18
Published:
2023-10-30
Contact:
Yaozhong ZHANG
E-mail:zhang_y_z@nwpu.edu.cn;542391943@qq.com;1223959392@qq.com;dragon-cl@sohu.com
About author:
Supported by:
Yaozhong ZHANG, Zhuoran WU, Zhenkai XIONG, Long CHEN. A UAV collaborative defense scheme driven by DDPG algorithm[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1211-1224.
1 |
ZHANG Q X, JIANG M L, FENG Z Y IoT enabled UAV: network architecture and routing algorithm. IEEE Internet of Things Journal, 2019, 6 (2): 3727- 3742.
doi: 10.1109/JIOT.2018.2890428 |
2 |
LAN T, QIN D, SUN G Joint optimization on trajectory, cache placement, and transmission power for minimum mission time in UAV-aided wireless networks. International Journal of Geo-Information, 2021, 10 (7): 426.
doi: 10.3390/ijgi10070426 |
3 |
ARAFAT M Y, MOH S Localization and clustering based on swarm intelligence in UAV networks for emergency communications. IEEE Internet of Things Journal, 2019, 6 (5): 8958- 8976.
doi: 10.1109/JIOT.2019.2925567 |
4 |
MUKHERJEE A, MISRA S, CHANDRA V S P, et al Resource-optimized multiarmed bandit-based offload path selection in edge UAV swarms. IEEE Internet of Things Journal, 2019, 6 (3): 4889- 4896.
doi: 10.1109/JIOT.2018.2879459 |
5 |
CHANDARANA M, MESZAROS E L, TRUJILLO A, et al Natural language based multimodal interface for UAV mission planning. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2017, 61 (1): 68- 72.
doi: 10.1177/1541931213601483 |
6 | CHANDARANA M, MESZAROS E L, TRUJILLO A, et al. “Fly like this”: natural language interface for UAV mission planning. Proc. of the International Conference on Advances in Computer-Human Interactions, 2017: 1−7. |
7 | XU G Q, JIANG W L, WANG Z L, et al Autonomous obstacle avoidance and target tracking of UAV based on deep reinforcement learning. Journal of Intelligent & Robotic Systems, 2022, 104 (4): 1- 13. |
8 |
HU Y, CHEN M Z, SAAD W, et al Distributed multi-agent meta learning for trajectory design in wireless drone networks. IEEE Journal on Selected Areas in Communications, 2021, 39 (10): 3177- 3192.
doi: 10.1109/JSAC.2021.3088689 |
9 |
WANG H, LI Y M, QIAN J B Self-adaptive resource allocation in underwater acoustic interference channel: a reinforcement learning approach. IEEE Internet of Things Journal, 2020, 7 (4): 2816- 2827.
doi: 10.1109/JIOT.2019.2962915 |
10 | LI G L, MA Y F Feature extraction algorithm of air combat situation based on deep neural networks. Journal of System Simulation, 2017, 29 (S1): 98- 105, 112. |
11 | HANG W. Research of UCAV air combat based on reinforcement learning. Harbin: Harbin Institute of Technology, 2015. (in Chinese) |
12 | XU Y H, XIE J W, ZHANG Y G, et al Reinforcement learning (RL)-based energy efficient resource allocation for energy harvesting-powered wireless body area network. Sensors, 2020, 20 (44): 1- 22. |
13 | LI Q Y, YAO H P, MAI T L, et al. Reinforcement and belief learning-based double auction mechanism for edge computing resource allocation. IEEE Internet of Things Journal. 2020, 7(7): 5976−5985. |
14 |
WANG S Y, DUAN J J, SHI D, et al A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning. IEEE Trans. on Power Systems, 2020, 35 (6): 4644- 4654.
doi: 10.1109/TPWRS.2020.2990179 |
15 | LIU P, MA Y F. A deep reinforcement learning based intelligent decision method for UCAV air combat. Proc. of the Asian Simulation Conference, 2017: 274−286. |
16 | PRICE J K, PINON-FISCHER O J, MAVRIS D N. Definition of optimal agent behaviors using reinforcement learning. Proc. of the AIAA Scitech Forum, 2019. DOI: 10.2514/6.2019-2200. |
17 | LUO D L, YANG X, ZHANG J P, et al New progress on UAV swarm confrontation. Science & Technology Review, 2017, 35 (7): 26- 31. |
18 |
HU J W, WANG L H, HU T, et al Autonomous maneuver decision making of dual-UAV cooperative air combat based on deep reinforcement learning. Electronics, 2022, 11 (3): 467.
doi: 10.3390/electronics11030467 |
19 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al Human level control through deep reinforcement learning. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236 |
20 | SILVER D, LEVER G, HEESS N. Deterministic policy gradient algorithms. Proc. of the 31st International Conference on International Conference on Machine Learning, 2014: 387−395. |
21 | SHI H B, SUN Y R, LI J. Dynamical motor control learned with deep deterministic policy gradient. Computational Intelligence and Neuroscience, 2018, 2018: 8535429 |
22 |
ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al A brief survey of deep reinforcement learning. IEEE Signal Processing Magazine, 2017, 34 (6): 26- 38.
doi: 10.1109/MSP.2017.2743240 |
23 | WANG G H, SHI J L. Actor-critic for multi-agent system with variable quantity of agents. Proc. of the International Conference on Internet of Things as a Service, 2018: 48−56. |
24 | HUANG W R, WANG Y Z, YI X D. A deep reinforcement learning approach to preserve connectivity for multi-robot systems. Proc. of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2017: 1−7. |
25 | YI H. Deep deterministic policy gradient for autonomous vehicle driving. Proc. of the International Conference on Artificial Intelligence, 2018: 191−194. |
26 | ANDERSEN P A, GOODWIN M, GRANMO O C. Deep RTS: a game environment for deep reinforcement learning in real-time strategy games. Proc. of the IEEE Conference on Computational Intelligence and Games, 2018: 1−8. |
27 | NIE H H, CHEN Y, SONG Y K, et al A general real-time OPF algorithm using DDPG with multiple simulation platforms. Proc. of the IEEE Innovative Smart Grid Technologies, 2019, 3713- 3718. |
[1] | Jiawei XIA, Xufang ZHU, Zhong LIU, Qingtao XIA. LSTM-DPPO based deep reinforcement learning controller for path following optimization of unmanned surface vehicle [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1343-1358. |
[2] | Yaozhong ZHANG, Yike LI, Zhuoran WU, Jialin XU. Deep reinforcement learning for UAV swarm rendezvous behavior [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 360-373. |
[3] | Bohao LI, Yunjie WU, Guofei LI. Hierarchical reinforcement learning guidance with threat avoidance [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1173-1185. |
[4] | Ang GAO, Qisheng GUO, Zhiming DONG, Zaijiang TANG, Ziwei ZHANG, Qiqi FENG. Research on virtual entity decision model for LVC tactical confrontation of army units [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1249-1267. |
[5] | Kaifang WAN, Bo LI, Xiaoguang GAO, Zijian HU, Zhipeng YANG. A learning-based flexible autonomous motion control method for UAV in dynamic unknown environments [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1490-1508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||