Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (5): 1191-1210.doi: 10.23919/JSEE.2023.000119
• Systems Engineering • Previous Articles Next Articles
Lei HU(), Guoxing YI(), Yi NAN(), Hao WANG()
Received:
2021-08-25
Online:
2023-10-18
Published:
2023-10-30
Contact:
Guoxing YI
E-mail:maple_hsjz@163.com;ygx@hit.edu.cn;nanyi11@163.com;21B904060@stu.hit.edu.cn
About author:
Lei HU, Guoxing YI, Yi NAN, Hao WANG. Combat situation suppression of multiple UAVs based on spatiotemporal cooperative path planning[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1191-1210.
Table 6
Parameters of threats"
Parameter | Threat code | ||||||
Thr1 | Thr2 | Thr3 | Thr4 | Thr5 | Thr6 | Thr7 | |
Location/km | (32,32) | (23,35) | (32,27) | (22,30) | (4.5,35) | (7.5,30) | (15.7,29) |
Shape code | 3 | 2 | 2 | 2 | 3 | 3 | 2 |
Size/km | 1/4 | 3 | 2.3 | 1.8/2.7 | 0.8/4.8 | 1/3 | 2 |
Azimuth/(°) | 0 | 90 | 0 | 0 | 90 | 0 | 60 |
Parameter | Threat code | ||||||
Thr8 | Thr9 | Thr10 | Thr11 | Thr12 | Thr13 | Thr14 | |
Location/km | (17,26) | (16,35) | (4.5,23) | (10,20) | (8,13) | (10,7) | (18,7) |
Shape code | 3 | 2 | 1 | 3 | 2 | 2 | 3 |
Size/km | 0.8/2.4 | 2 | 6 | 1.2/3.6 | 2.5 | 2 | 1.8/2.7 |
Azimuth/(°) | 0 | 0 | 0 | 0 | 45 | 0 | 0 |
Parameter | Threat code | ||||||
Thr15 | Thr16 | Thr17 | Thr18 | Thr19 | Thr20 | ||
Location/km | (25,5) | (15,3) | (33,8) | (32,17) | (25.5,11.5) | (25,20) | |
Shape code | 1 | 3 | 3 | 3 | 2 | 1 | |
Size/km | 4.5 | 1/1.5 | 1.5/3 | 1/2.5 | 2 | 2.8 | |
Azimuth/(°) | 0 | 0 | 90 | 0 | −40 | 120 |
Table 8
Cooperation rendezvous information"
Item | U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8 |
DPL/ km | 12.615 | 15.591 | 15.885 | 22.328 | 16.797 | 16.302 | 15.744 | 18.855 |
Control way | Path | Speed | Path | Speed | Speed | Speed | Speed | Speed |
Maneuver distance/ km | 1.340 | − | 2.26 | − | − | − | − | − |
Maneuver strategy | Detouring | − | Circling | − | − | − | − | − |
Maneuver times | 1 | − | 1 | − | − | − | − | − |
1 | HUANG H, WU K, WANG H F, et al Path planning of UAV low altitude penetration based on improved moth-flame optimization. Journal of Chinese Inertial Technology, 2021, 29 (2): 256- 263. |
2 | MA C Y, FENG Z Q, ZHENG X M Development of bionic UAVs cluster technology. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (1): 1- 8. |
3 | KHAN A, AFTAB F, ZHANG Z S UAPM: an urgency aware packet management for disaster management using flying ad-hoc networks. China Communications, 2019, 16 (11): 167- 182. |
4 | YANG Q Q, GAO Y Y, GUO Y, et al. Target search path planning for naval battle field based on deep reinforcement learning. Systems Engineering and Electronics, 2022, 44(11): 3486−3495. (in Chinese) |
5 | YAN Z P, BAI R, CHI D N, et al Formation coordination control of multi-UUV for object searching. Computer Measurement & Control, 2013, 21 (6): 1532- 1536. |
6 |
JAVIER A M, BAKER S, RUS D Multi-robot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research, 2017, 36 (9): 1000- 1021.
doi: 10.1177/0278364917719333 |
7 |
MAZA I, CABALLERO F, CAPITAN J, et al Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent and Robotic Systems, 2011, 61 (1/4): 563- 585.
doi: 10.1007/s10846-010-9497-5 |
8 | WU W N, GUAN Y Z, GUO J F, et al Research on cooperative task assignment method used to the mission SEAD with real constraints. Control and Decision, 2017, 32 (9): 1574- 1582. |
9 | XIANG X J, YAN C, WANG C, et al Coordination control method for fixed-wing UAV formation through deep reinforcement learning. Acta Aeronautica et Astronautica Sinica, 2021, 42 (4): 420- 433. |
10 | TSOURDOS A, WHITE B, SHANMUGAVEL M, et al. Cooperative path planning of unmanned aerial vehicles. ZHOU Z, WANG X. trans. Beijing: National Defence Industry Press, 2013. (in Chinese) |
11 | LI X Q, MA R, ZHANG S, et al Improved design of ant colony algorithm and its application in path planning. Acta Aeronautica et Astronautica Sinica, 2020, 41 (S2): 213- 219. |
12 | WU W H, GUO X F, ZHOU S Y Dynamic route planning based on improved constrained differential evolution algorithm. Control and Decision, 2020, 35 (10): 2381- 2390. |
13 | HU L, YI G X, HUANG C, et al Research on dynamic weapon target assignment based on cross-entropy. Mathematical Problems in Engineering, 2020, 2020, 1- 13. |
14 | SUN X L. Research on mission planning for unmanned aerial vehicles based on multi-stage path prediction. Harbin: Harbin Institute of Technology, 2015. |
15 | WU K, TAN S C Path planning of UAVs based on improved whale optimization algorithm. Acta Aeronautica et Astronautica Sinica, 2020, 41 (2): 107- 114. |
16 |
ZHEN Z Y, ZHU P, XUE Y X, et al Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets cooperative search-attack. Chinese Journal of Aeronautics, 2019, 32 (12): 2706- 2716.
doi: 10.1016/j.cja.2019.05.012 |
17 | ZHEN Z Y, XING D J, GAO C Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm. Aerospace Science & Technology, 2018, 76, 402- 411. |
18 | PANG Q W, HU Y J, LI W G Path planning algorithm for multi-UAVs cooperative reconnaissance on multiple targets. Journal of Chinese Inertial Technology, 2019, 27 (3): 340- 348. |
19 | CHEN Y B, YU J Q, MEI Y, et al Modified central force optimization (MCFO) algorithm for 3D UAV path planning. Neurocomputing, 2016, 171 (1): 878- 888. |
20 | LI W G, HU Y J, PANG Q W, et al Track planning of multi-UAV cooperative reconnaissance based on improved genetic algorithm. Journal of Chinese Inertial Technology, 2020, 28 (2): 248- 255. |
21 | LI W G, SUN S Y, LI J Z, et al UAV dynamic path planning algorithm based on segmentated optimization RRT. Systems Engineering and Electronics, 2018, 40 (8): 1786- 1793. |
22 | LAVALLE S M, KUFFNER J J. Randomized kino-dynamic planning. International Journal of Robotics Research, 1999, 15(5): 378−400. |
23 |
KOTHARI M, POSTLETHWAITE I A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. Journal of Intelligent and Robotic Systems, 2013, 71 (2): 231- 253.
doi: 10.1007/s10846-012-9776-4 |
24 | PERSSON S M, SHARF I. Sampling-based A* algorithm for robot path-planning. The International Journal of Robotics Research, 2014, 33(13): 1683−1708. |
25 | SINGH Y, SHARMA S, SUTTON R, et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Engineering, 2018, 168(1): 187−201. |
26 |
KARAMEN S, FRAZZOLI E Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 2011, 30 (7): 846- 894.
doi: 10.1177/0278364911406761 |
27 |
JEONG I B, LEE S J, KIM J H Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial solution and convergence rate. Expert Systems with Applications, 2019, 123, 82- 90.
doi: 10.1016/j.eswa.2019.01.032 |
28 | OH H, KIM S, SHIN H S, et al Rendezvous and standoff target tracking guidance using differential geometry. Journal of Intelligent and Robotic Systems, 2013, 69 (4): 389- 405. |
29 |
MANATHARA J G, GHOSE D Rendezvous of multiple UAVs with collision avoidance using consensus. Journal of Aerospace Engineering, 2012, 25 (4): 480- 489.
doi: 10.1061/(ASCE)AS.1943-5525.0000145 |
30 | MCLAIN T W, BEARD R W Coordination variables, coordination functions, and cooperative timing missions. Journal of Guidance, Control & Dynamics, 2005, 28 (1): 150- 161. |
31 | SHAN W Z, CUI N G, HUANG B, et al Multiple UAV cooperative path planning based on PSO-HJ method. Journal of Chinese Inertial Technology, 2020, 28 (1): 122- 128. |
32 |
DUAN H B, ZHANG X Y, WU J Max-min adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments. Journal of Bionic Engineering, 2009, 6 (2): 161- 173.
doi: 10.1016/S1672-6529(08)60113-4 |
33 | SUN X L, MENG Y L, QI N M, et al Cooperative path planning for rendezvous of unmanned aerial vehicles. Robot, 2015, 37 (5): 621- 627. |
34 |
FOSSEN T I, PETTERSEN K Y, GALEAZZI R Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces. IEEE Trans. on Control Systems Technology, 2015, 23 (2): 820- 827.
doi: 10.1109/TCST.2014.2338354 |
35 |
DUBINS L E On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 1957, 79, 497- 516.
doi: 10.2307/2372560 |
36 | HU L. Research on combat effectiveness algorithm of flying weapon under dynamic condition. Harbin: Harbin Institute of Technology, 2018. (in Chinese) |
37 | KUFFNER J J, LAVALLE S M. RRT-connect: an efficient approach to single-query path planning. Proc. of the IEEE International Conference on Robotics and Automation, 2000: 995−1001. |
38 | LI Y, XU D, ZHOU C Cooperation path planning of dual-robot based on self-adaptive stepsize RRT. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50 (3): 358- 367. |
[1] | Dongdong YAO, Xiaofang WANG, Hai LIN, Zhuping WANG. Leader trajectory planning method considering constraints of formation controller [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1294-1308. |
[2] | Liang Yang, Wanchun Chen, Xiaoming Liu, and Hao Zhou. Robust entry guidance using multi-segment linear pseudospectral model predictive control [J]. Systems Engineering and Electronics, 2017, 28(1): 103-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||