Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (5): 1085-1100.doi: 10.23919/JSEE.2023.000033
• Advanced Radar Imaging and Intelligent Processing • Previous Articles Next Articles
Hongcheng ZENG1,2(), Jiadong DENG1(), Pengbo WANG1(), Xinkai ZHOU1(), Wei YANG1(), Jie CHEN1,*()
Received:
2022-02-28
Online:
2023-10-18
Published:
2023-10-30
Contact:
Jie CHEN
E-mail:zenghongcheng@buaa.edu.cn;djdong0725@buaa.edu.cn;wangpb7966@buaa.edu.cn;zhoux1nka1@buaa.edu.cn;yangweigigi@sina.com;chenjie@buaa.edu.cn
About author:
Supported by:
Hongcheng ZENG, Jiadong DENG, Pengbo WANG, Xinkai ZHOU, Wei YANG, Jie CHEN. A spawning particle filter for defocused moving target detection in GNSS-based passive radar[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1085-1100.
Table 1
Main simulation parameters"
Parameter | Value | Parameter | Value | |
Wavelength/m | 0.255 | Supporting length Lf,0/pixel | 40 | |
Antenna gain/dB | 30 | Spawning particles number Ns | 400 | |
Target appearance | Frame-3 | Continuous/born particles number Nc=Nb | 10 000 | |
Target disappearance | Frame-11 | Target position/km | (100,100,8) | |
Threshold Pth | 0.5 | Target velocity/(m·s−1) | (100,−173,0) | |
Image frames | 13 | Image SNR/dB | 8, 10 | |
Target RCS/dB | 30 | SVN #10 position/km | (10 232.9, –15 519.5, 12 420.5) | |
Sampling rate/MHz | 50.0 | SVN #10 Velocity/(m·s−1) | (190.2, –2 114.0, –1 798.6) |
Table 2
Experimental parameters with GPS satellites"
Parameter | Value |
Wavelength/m | 0.19 |
Sampling rate/MHz | 62 |
Signal bandwidth/MHz | 2.046 |
Antenna gain/dB | 15 |
Target speed/( | 78 |
SVN #02 position/km | (−21605.1, 14765.4, 5351.2) |
SVN #13 position/km | (−13120.6, 20485.8, 10363.6) |
SVN #30 position/km | (−23221.1, −1572.9, 13072.6) |
Receiver position/km | (−2191.8, 4370.8, 4081.2) |
Target position/km | (−2191.3, 4371.9, 4081.6) |
14 | ZHOU X K, WANG P B, ZENG H C, et al Moving target detection using GNSS-based passive bistatic radar. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5113415. |
15 |
HE X, ZENG T, CHERNIAKOV M Signal detectability in SS-BSAR with GNSS non-cooperative transmitter. IEE Proceedings-Radar Sonar and Navigation, 2005, 152 (3): 124- 132.
doi: 10.1049/ip-rsn:20045042 |
16 | TAO R, ZHANG N, WANG Y C Analyzing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar. IET Radar Sonar & Navigation, 2011, 5 (1): 12- 22. |
17 | XU J, YU J, PENG Y N, et al Radon-Fourier transform for radar target detection, I: generalized Doppler filter bank. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (2): 1186- 1202. |
18 |
BELTRAMONTE T, BRACE P, BISCEGLIE M D, et al Simulation-based feasibility analysis of ship detection using GNSS-R delay-Doppler maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1385- 1399.
doi: 10.1109/JSTARS.2020.2970221 |
19 | ZHOU X K, WANG P B, CHEN J, et al A modified Radon Fourier transform for GNSS-based bistatic radar target detection. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3501805. |
20 |
XU J, YU J, PENG Y N, et al Radon-Fourier transform for radar target detection (II): blind speed sidelobe suppression. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (4): 2473- 2486.
doi: 10.1109/TAES.2011.6034645 |
21 |
YU J, XU J, PENG Y N, et al Radon-Fourier transform for radar target detection (III): optimality and fast implementations. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (2): 991- 1004.
doi: 10.1109/TAES.2012.6178044 |
22 |
CHEN X L, GUAN J, LIU N B, et al Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration. IEEE Trans. on Signal Processing, 2014, 62 (4): 939- 953.
doi: 10.1109/TSP.2013.2297682 |
23 |
RUTTEN M G, GORDON N J, MASKELL S Recursive track-before-detect with target amplitude fluctuations. IEE Proceedings-Radarm-Sonar and Navigation, 2005, 152, 345- 352.
doi: 10.1049/ip-rsn:20045041 |
24 | RISTIC B, ARULAMPALAM S, GORDON N. A beyond the Kalman filter: particle filters for tracking applications. Boston: Artech House, 2004. |
25 |
XU C, HE Z S, LIU H C, et al Bayesian track-before-detect algorithm for nonstationary sea clutter. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1338- 1344.
doi: 10.23919/JSEE.2021.000113 |
26 | SALMOND D J, BIRCH H A particle filter for track before-detect. Proc. of the American Control Conference, 2001, 5, 3755- 3760. |
27 | ROLLASON M, SALMOND D J. A particle filter for track before-detect of a target with unknown amplitude. IEE Target Tracking: Algorithms and Applications, 2001. DOI: 10.1049/ic:20010240. |
28 |
MAHLER R PHD filters of higher order in target number. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (4): 1523- 1543.
doi: 10.1109/TAES.2007.4441756 |
29 | LI T C, CORCHADO J M, SUN S D, et al Multi-EAP: extended EAP for multi-estimate extraction for SMC-PHD filter. Chinese Journal of Aeronautics, 2017, 30 (1): 369- 379. |
30 | SI W J, ZHU H F, QU Z Y Multi-sensor Poisson multi-Bernoulli filter based on partitioned measurements. IET Radar, Sonar & Navigation, 2020, 14 (6): 860- 869. |
31 |
SU Z Z, JI H B, ZHANG Y Q A Poisson multi-Bernoulli mixture filter with spawning based on Kullback-Leibler divergence minimization. Chinese Journal of Aeronautics, 2021, 34 (11): 154- 168.
doi: 10.1016/j.cja.2020.11.015 |
32 |
YANG X J, XING K Y, FENG X L Maneuvering target tracking in dense clutter based on particle filtering. Chinese Journal of Aeronautics, 2011, 24 (2): 171- 180.
doi: 10.1016/S1000-9361(11)60021-6 |
33 |
UBEDA-MEDINA L, GARCIA-FERNANDEZ A F, GRAJAL J Adaptive auxiliary particle filter for track-before-detect with multiple targets. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (5): 2317- 2330.
doi: 10.1109/TAES.2017.2691958 |
34 |
FREITAS A D, MIHAYLOVA L, GNING A, et al A box particle filter method for tracking multiple extended objects. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55 (4): 1640- 1655.
doi: 10.1109/TAES.2018.2874147 |
35 | RUTTEN M, GORDON N, MASKELL S Efficient particle-based track-before-detect in Rayleigh noise. Proc. of the 7th International Conference on Information Fusion, 2004, 693- 700. |
36 |
ZENG H C, CHEN J, WANG P B, et al 2-D coherent integration processing and detecting of aircrafts using GNSS-based passive radar. Remote Sensing, 2018, 10 (7): 1164.
doi: 10.3390/rs10071164 |
37 |
OLIVARES J, MARTIN P, VALERO E A simple approximation for the modified Bessel function of zero order I0(x) . Journal of Physics Conference Series, 2018, 1043, 012003.
doi: 10.1088/1742-6596/1043/1/012003 |
1 | ZAVOROTNY V U, GLEASON S, CARDELLACH E, et al Tutorial on remote sensing using GNSS bistatic radar of opportunity. IEEE Geoscience and Remote Sensing Magazine, 2014, 24 (4): 8- 45. |
2 |
LI W Q, CARDELLACH E, RIBO S, et al First spaceborne demonstration of BeiDou-3 signals for GNSS reflectometry from CYGNSS constellation. Chinese Journal of Aeronautics, 2021, 34 (9): 1- 10.
doi: 10.1016/j.cja.2020.11.016 |
3 | SADEGHI M, BEHNIA F, AMIRI R Maritime target localization from bistatic range measurements in space-based passive radar. IEEE Trans. on Instrumentation and Measurement, 2021, 70, 8502708. |
4 | ANTONIOU M, CHERNIAKOV M GNSS-based bistatic SAR: a signal processing view. EURASIP Journal on Advances in Signal Processing, 2013, 1, 98. |
5 |
ANTONIOU M, ZENG Z, LI F F, et al Experimental demonstration of passive BSAR imaging using navigation satellites and a fixed receiver. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (3): 477- 481.
doi: 10.1109/LGRS.2011.2172571 |
6 |
ZHOU X K, CHEN J, WANG P B, et al An efficient imaging algorithm for GNSS-R bi-static SAR. Remote Sensing, 2019, 11 (24): 2945.
doi: 10.3390/rs11242945 |
7 | LIU F, FAN X Z, ZHANG T, et al GNSS-based SAR interferometry for 3-D deformation retrieval: algorithms and feasibility study. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (10): 5736- 5748. |
8 |
ZHANG Q L, ANTONIOU M, CHANG W G, et al Spatial decorrelation in GNSS-based SAR coherent change detection. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (1): 219- 228.
doi: 10.1109/TGRS.2014.2321145 |
9 | HE Z Y, YANG Y, CHEN W. A hybrid integration method for moving target detection with GNSS-based passive radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021, 14: 1184−1193. |
10 |
ZENG H C, CHEN J, WANG P B, et al Moving target detection in multi-static GNSS-based passive radar based on multi-bernoulli filter. Remote Sensing, 2020, 12 (21): 3495.
doi: 10.3390/rs12213495 |
11 |
MA H, ANTONIOU M, STOVE A G, et al Target kinematic state estimation with passive multistatic radar. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (4): 2121- 2134.
doi: 10.1109/TAES.2021.3069283 |
12 |
PASTINA D, SANTI F, PIERALICE F, et al Passive radar imaging of ship targets with GNSS signals of opportunity. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (3): 2627- 2642.
doi: 10.1109/TGRS.2020.3005306 |
13 |
MA H, ANTONIOU M, PASTINA D, et al Maritime moving target indication using passive GNSS-based bistatic radar. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (1): 115- 130.
doi: 10.1109/TAES.2017.2739900 |
38 |
GAO H, LI J W Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm. Sensors, 2014, 14 (6): 10829- 10845.
doi: 10.3390/s140610829 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||