Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (4): 879-893.doi: 10.23919/JSEE.2023.000066
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles
Libing JIANG1(), Shuyu ZHENG1,*(), Qingwei YANG1, Peng YANG2(), Zhuang WANG1()
Received:
2021-05-25
Online:
2023-08-18
Published:
2023-08-28
Contact:
Shuyu ZHENG
E-mail:jianglibing@nudt.edu.cn;1846372244@qq.com;liuzhang881@126.com;zhuang_wang@sina.com
About author:
Libing JIANG, Shuyu ZHENG, Qingwei YANG, Peng YANG, Zhuang WANG. A modified OMP method for multi-orbit three dimensional ISAR imaging of the space target[J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 879-893.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Operating parameters of the observing radar"
Parameter | value |
Carrier frequency | 16.67 |
Signal bandwidth B/GHz | 2 |
Pulse duration Trs/μs | 400 |
Observation time Tr/s | 1.3963 |
Number of azimuth angle | 280 |
Pulse repetition frequency (PRF)/Hz | 200 |
Azimuth angle/(°) | 0−4 |
Observation distance Rk/km | 20 |
Table 3
Computational running comparisons between different imaging s "
Algorithm | Running time | |||
Four orbits | Seven orbits | 11 orbits | 20 orbits | |
3D-FFT algorithm | 5.850087 | 7.403087 | 8.401756 | 9.056088 |
BP algorithm | 651.823212 | 776.154612 | 860.884807 | 925.623634 |
OMP algorithm | 32.501502 | 80.764210 | 157.998510 | 261.189289 |
STOMP algorithm | 13.707404 | 24.910388 | 34.674106 | 55.044340 |
Improved OMP algorithm | 30.216193 | 36.545747 | 38.207677 | 54.325617 |
1 |
KARAKASILIOTIS A V, LAZAROV A D, FRANGOS P V, et al Two dimensional ISAR model and image reconstruction with stepped frequency modulated signal. IET Signal Processing, 2008, 2 (3): 277- 290.
doi: 10.1049/iet-spr:20070115 |
2 | LI G, ZHANG H, WANG X Q, et al. ISAR 2-D imaging of uniformly rotating targets via matching pursuit. IEEE Trans. on Aerospace and Electronics Systems, 2012, 48(2): 1838−1846. |
3 | ZHANG S S, ZHANG W, ZONG Z L, et al. High resolution bistatic ISAR imaging based on two dimensional compressed sensing. IEEE Trans. on Antennas and Propagation, 2015, 63(5): 2098−2111. |
4 |
WANG X, ZHANG M J Super resolution ISAR imaging via 2D unitary ESPRIT. IET Electronics Letters, 2015, 51 (6): 519- 521.
doi: 10.1049/el.2014.3518 |
5 | LI S D, CHEN W F, LIU W J, et al. Fast 2D super resolution ISAR imaging method under low signal-to-noise ratio. IET Radar, Sonar & Navigation, 2017, 11(10): 1495−1504. |
6 |
HE X Y, TONG N N, HU X W, et al Dynamic ISAR imaging of maneuvering targets based on sparse matrix recovery. Signal Processing, 2017, 134, 123- 129.
doi: 10.1016/j.sigpro.2016.12.002 |
7 |
SHAO S, ZHANG L, LIU H W High resolution ISAR imaging and motion compensation with 2-D joint sparse reconstruction. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (10): 6791- 6811.
doi: 10.1109/TGRS.2020.2974550 |
8 | LIU C L. Research on inteferometric inverse synthetic aperture radar three-dimensional imaging. Changsha: National University of Defense Technology, 2012. (in Chinese) |
9 | WU W Z, HU P J, XU S Y, et al Image registration for InISAR based on joint translational motion compensation. IET Radar, Sonar & Navigation, 2017, 11 (10): 1597- 1603. |
10 |
WANG Y, RONG J, HAN T Novel approach for high resolution ISAR/InISAR sensors imaging of maneuvering target based on peak extraction technique. IEEE Sensors Journal, 2019, 19 (14): 5541- 5558.
doi: 10.1109/JSEN.2019.2905246 |
11 |
WANG B P, ZHANG Y, FANG Y, et al Parametric narrow-band InISAR 3D imaging based on compressed sensing. Chinese Journal of Electronics, 2020, 29 (3): 508- 514.
doi: 10.1049/cje.2020.03.006 |
12 | RONG J J, WANG Y, HAN T Interferometric ISAR imaging of maneuvering target with arbitrary three-antenna configuration. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (2): 1102- 1119. |
13 | LIU C L, GAO X Z, LI X Review of interferometric ISAR imaging. Signal Processing, 2011, 27 (5): 737- 748. |
14 | AUSHERMAN D A, KOZMA A, WALKER J L Developments in radar imaging. IEEE Trans. on Aerospace and Electronics Systems, 1984, 20 (4): 363- 400. |
15 |
ROSEN P A, HENSLEY S, JOUGHIN I R Synthetic aperture radar interferometry. Proceedings of the IEEE, 2000, 88 (3): 333- 382.
doi: 10.1109/5.838084 |
16 |
GRAHAM L C Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 1974, 62 (6): 763- 768.
doi: 10.1109/PROC.1974.9516 |
17 | YIN J F, LI D J, WANG A M, et al Three-dimensional imaging technique of space moving target based on spaceborne along-cross track millimeter-wave InISAR. Journal of Astronautics, 2013, 34 (2): 237- 245. |
18 | LIU Z L. Study on signal processing technique of spaceborne InSAR. Changsha: National University of Defense Technology, 2009. (in Chinese) |
19 | MANG C Z, ZHANG S H Three dimensional imaging technique of ship targets with monopulse radar. Journal of Electronics, 2000, 22 (3): 385- 391. |
20 | ZHANG T, MANG C Z, ZHANG Q, et al Monopulse radar three dimensional imaging techniques for targets in stepped tracking mode. Journal of Electronics and Information Technology, 2001, 23 (9): 912- 918. |
21 | LI Q. Research on 3D imaging and recognition of monopulse radar target. Xi’an: Xidian University, 2007. (in Chinese) |
22 | LI J, QUAN Y H, XING M D, et al 3D ISAR imaging technology based on sum-diff beam. Chinese Journal of Radio Science, 2010, 25 (2): 281- 286. |
23 |
WANG Q, XING M D, LU G Y, et al High-resolution three-dimensional radar imaging for rapidly spinning targets. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46 (1): 22- 30.
doi: 10.1109/TGRS.2007.909086 |
24 |
ZHANG L, XING M D, QIU C W, et al Two-dimensional spectrum matched filter banks for high-speed spinning-target three-dimensional ISAR imaging. IEEE Trans. on Geoscience and Remote Sensing Letters, 2009, 6 (3): 368- 372.
doi: 10.1109/LGRS.2009.2013487 |
25 | GAO Z Z. New technology of high resolution ISAR imaging. Xi’an: Xidian University, 2009. (in Chinese) |
26 | LUO B F, ZHANG Q, YUAN T, et al Analysis and compensation of mismatching between two ISAR images in interferometric inverse synthetic aperture radar 3-D imaging. Journal of Xidian University, 2003, 30 (6): 739- 743. |
27 |
LIU Y, WU M Y, WU S J Fast OMP algorithm 2D angle estimation in MIMO radar. Electronics Letters, 2010, 46 (6): 444- 445.
doi: 10.1049/el.2010.3023 |
28 |
GUI G, MEHBODNIYA A, WAN Q, et al Sparse signal recovery with OMP algorithm using sensing measurement matrix. IEICE Electronics Express, 2011, 8 (5): 285- 290.
doi: 10.1587/elex.8.285 |
29 |
KULKARNI A, MOHSENIN T Low overhead architectures for OMP compressive sensing reconstruction. IEEE Trans. on Circuits and Systems, 2017, 64 (6): 1468- 1480.
doi: 10.1109/TCSI.2017.2648854 |
[1] | Zongling LI, Qingjun ZHANG, Teng LONG, Baojun ZHAO. A parallel pipeline connected-component labeling method for on-orbit space target monitoring [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1095-1107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||