Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (4): 861-872.doi: 10.23919/JSEE.2023.000004
• ELECTRONICS TECHNOLOGY • Previous Articles
Chuntong LIU1(), Hao WANG1,2,*()
Received:
2020-12-23
Online:
2023-08-18
Published:
2023-08-28
Contact:
Hao WANG
E-mail:liuchuntong72@sina.com;17791821514@163.com
About author:
Chuntong LIU, Hao WANG. Research on infrared dim and small target detection algorithm based on low-rank tensor recovery[J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 861-872.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Details of each scene"
Image | Sensor | Resolution | SNR | Detail |
Sequence 1 | Infrared | 640×640 | 3 | Single pixel point target is in the hilly area |
Sequence 2 | Infrared | 640×640 | 3 | Single pixel point target is in the water lake area |
Sequence 3 | Infrared | 640×640 | 3 | Single pixel point target is in the cloud area |
Sequence 4 | Infrared | 640×640 | 1 | Single pixel point target is around the border |
Table 2
SCRG comparison of different algorithms"
Method | Scene | |||||
Scene 1 | Scene 2 | Scene 3 | Scene 4-1 | Scene 4-2 | Scene 4-3 | |
Top-hat | 1.09 | 1.02 | 2.07 | 3.79 | 19.03 | 40.66 |
LCM | 4.82 | 5.67 | 10.87 | 24.58 | 10.44 | 23.78 |
NIPPS | 70.44 | 259.67 | 123.34 | 29.50 | 25.19 | 117.56 |
RIPT | NaN | NaN | NaN | 534.31 | 418.24 | 746.13 |
PSTNN | 3.10 | 1.05 | 2.65 | 2.66 | 8.27 | 14.83 |
Proposed | 438.93 | 639.53 | 497.69 | Inf | Inf | Inf |
Table 3
${{\boldsymbol{B}}_{\boldsymbol{f}}}$ comparison of different algorithms "
Method | Scene | |||||
Scene 1 | Scene 2 | Scene 3 | Scene 4-1 | Scene 4-2 | Scene 4-3 | |
Top-hat | 0.92 | 0.83 | 0.99 | 0.07 | 0.06 | 0.05 |
LCM | 0.76 | 0.80 | 0.73 | 0.78 | 0.83 | 0.76 |
NIPPS | 0.10 | 0.09 | 0.16 | 0 | 0.01 | 0.01 |
RIPT | NaN | NaN | NaN | 0 | 0 | 0 |
PSTNN | 0.13 | 0.12 | 0.19 | 0.04 | 0.03 | 0.03 |
Proposed | 0 | 0 | 0 | 0 | 0 | 0 |
Table 4
t comparison of different algorithms s "
Method | Scene | |||||
Scene 1 | Scene 2 | Scene 3 | Scene 4-1 | Scene 4-2 | Scene 4-3 | |
Top-hat | 0.89 | 0.88 | 0.87 | 0.98 | 0.98 | 0.91 |
LCM | 12.72 | 9.14 | 8.86 | 8.86 | 8.62 | 8.77 |
NIPPS | 618.71 | 619.26 | 613.05 | 612.90 | 614.34 | 611.72 |
RIPT | 5.61 | 7.01 | 5.89 | 4.43 | 4.09 | 4.18 |
PSTNN | 59.79 | 59.95 | 60.29 | 71.36 | 71.36 | 69.98 |
Proposed | 3.90 | 3.83 | 3.71 | 3.78 | 3.81 | 4.09 |
1 | JIANG T X, HUANG T Z, ZHAO X L, et al Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm. Journal of Computational and Applied Mathematics, 2020, 372, 112680. |
2 | ZHANG W C, CHEN J, GAO Y. Infrared small and dim target detection based on weighted nuclear norm minimization. Ordnance Industry Automation, 2018, 37(6): 7. (in Chinese) |
3 |
FAN Z L, BI D Y, XIONG L, et al Dim infrared image enhancement based on convolutional neural network. Neurocomputing, 2018, 272, 396- 404.
doi: 10.1016/j.neucom.2017.07.017 |
4 | LIU M Q, HUANG Z C, FAN Z, et al. Infrared dim target detection and tracking based on particle filte. Proc. of the 36th Chinese Control Conference, 2017: 5372−5378. |
5 |
BAI X Z, BI Y G Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (4): 2452- 2466.
doi: 10.1109/TGRS.2017.2781143 |
6 |
WANG W X, FU Y T, DONG F, et al Infrared ship target detection method based on deep convolution neural network. Acta Optica Sinica, 2018, 38 (7): 0712006.
doi: 10.3788/AOS201838.0712006 |
7 |
MARVASTI F S, MOSAVI M R, NASIRI M Flying small target detection in IR images based on adaptive toggle operator. IET Computer Vision, 2018, 12 (4): 527- 534.
doi: 10.1049/iet-cvi.2017.0327 |
8 |
WANG X Y, PENG Z M, ZHANG P, et al Infrared small target detection via nonnegativity-constrained variational mode decomposition. IEEE Gecscience and Remote Sensing Letters, 2017, 14 (10): 1700- 1704.
doi: 10.1109/LGRS.2017.2729512 |
9 | PENTLAND A P Fractal-based description of natural scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6 (6): 661- 674. |
10 | TOM V T, PELI T, LEUNG M, et al. Morphology-based algorithm for point target detection in infrared backgrounds. Proc. of the Optical Engineering and Photonics in Aero-space Sensing, 1993: 2−11. |
11 | DESHPANDE S D, MENG H E, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets. Proc. of the SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, 1999: 74−83. |
12 | DENG L Z, ZHU H, ZHOU Q, et al Adaptive top-hat filter based on quantum genetic algorithm for infrared small target detection. Multimedia Tools and Applications, 2018, 77 (9): 10539- 10551. |
13 | ZHANG Y, TIAN X, REN P. An adaptive bilateral filter based framework for image denoising. Neurocomputing, 2014, 140(22): 299−316. |
14 | ZHANG S F, HUANG X H, WANG M. Background suppression algorithm for infrared images based on robinson guard filter. Proc. of the 2nd International Conference on Multimedia and Image processing, 2017: 250−254. |
15 | WANG X Y, PENG Z M. ZHANG P, et al Infrared small target detection via nonnegativity-constrained variational mode decomposition. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (10): 1700- 1704. |
16 | YI X, WANG B J, ZHOU H X, et al Dim and small infrared target fast detection guided by visual saliency. Infrared Physics & Technology, 2019, 97, 6- 14. |
17 |
CHEN C L P, LI H, WEI Y, et al A local contrast method for small infrared target detection. IEEE Geoscience Remote Sensing Letters, 2014, 52 (1): 574- 581.
doi: 10.1109/TGRS.2013.2242477 |
18 |
WEI Y T, YOU X G, LI H Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognition, 2016, 58, 216- 226.
doi: 10.1016/j.patcog.2016.04.002 |
19 | NIE J Y, QU S C, WEI Y T, et al An infrared small target detection method based on multiscale local homogeneity measure. Infrared Physics & Technology, 2018, 90, 186- 194. |
20 |
HAN J H, LIANG K, ZHOU B, et al Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (4): 612- 616.
doi: 10.1109/LGRS.2018.2790909 |
21 |
DENG H, SUN X P, LIU M L, et al Small infrared target detection based on weighted local difference measure. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (7): 4204- 4214.
doi: 10.1109/TGRS.2016.2538295 |
22 | QIAN K, ZHOU H X, WANG B J, et al Infrared dim moving target tracking via sparsity-based discriminative classifier and convolutional network. Infrared Physics & Technology, 2017, 86, 103- 115. |
23 |
SUN Y, YANG J G, LONG Y L, et al Infrared small target detection via spatial-temporal total variation regularization and weighted tensor nuclear norm. IEEE Access, 2019, 7, 56667- 56682.
doi: 10.1109/ACCESS.2019.2914281 |
24 |
GAO C Q, MENG D Y, YANG Y, et al Infrared patch-image model for small target detection in a single image. IEEE Trans. on Image Processing, 2013, 22 (12): 4996- 5009.
doi: 10.1109/TIP.2013.2281420 |
25 |
MA M Y, WANG D J, SUN H, et al Infrared dim-small target detection based on robust principal component analysis and multi-point constant false alarm. Acta Optica Sinica, 2019, 39 (8): 0810001.
doi: 10.3788/AOS201939.0810001 |
26 | DAI Y M, WU Y Q, SONG Y, et al Non-negative infrared patch-image model: robust target-background separation via partial sum minimization of singular values. Infrared Physics & Technology, 2017, 81, 182- 194. |
27 |
DAI Y M, WU Y Q Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (8): 3752- 3767.
doi: 10.1109/JSTARS.2017.2700023 |
28 |
ZHANG L D, PENG Z M Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sensing, 2019, 11 (4): 382.
doi: 10.3390/rs11040382 |
29 | DU P, HAMDULLA A Infrared small target detection using homogeneity-weighted local contrast measure. IEEE Geoscience and Remote Sensing Letters, 2019, 17 (3): 514- 518. |
30 |
GAO J Y, GUO Y L, LIN Z P, et al Robust infrared sm all target detection using multiscale gray and variance difference measures. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (12): 5039- 5052.
doi: 10.1109/JSTARS.2018.2877501 |
31 | KANG H, XIA M Detectability of infrared small targets. Infrared Physics & Technology, 2010, 53, 208- 217. |
[1] | Bingren JI, Yong WANG, Bin ZHAO, Rongqing XU. Multi-static InISAR imaging for ships under sparse aperture [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 575-584. |
[2] | Yan Zhang, Jichang Guo, and Xianguo Li. Efficient recovery of group-sparse signals with truncated and reweighted l2,1-regularization [J]. Systems Engineering and Electronics, 2017, 28(1): 19-. |
[3] | Sijia Cai, Ping Wang, Linhao Li, and Chuhan Zhang. Higher-order principal component pursuit via tensor approximation and convex optimization [J]. Journal of Systems Engineering and Electronics, 2014, 25(3): 523-530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||