1 |
GAUDIO L, KOBAYASHI M, CAIRE G, et al On the effectiveness of OTFS for joint radar parameter estimation and communication. IEEE Trans. on Wireless Communications, 2020, 19 (9): 5951- 5965.
doi: 10.1109/TWC.2020.2998583
|
2 |
HLAWATSCH F, MATZ G. Wireless communications over rapidly time-varying channels. New York: Academic, 2011.
|
3 |
WEI Z Q, LI S Y, YUAN W J, et al. Orthogonal time frequency space modulation–part I: fundamentals and challenges ahead. IEEE Communications Letters, 2023, 27(1): 4−8.
|
4 |
WEI Z Q, YUAN W J, LI S Y, et al Orthogonal time-frequency space modulation: a promising next-generation waveform. IEEE Wireless Communications, 2021, 28 (4): 136- 144.
doi: 10.1109/MWC.001.2000408
|
5 |
WANG C X, HUANG J, WANG H, et al 6G wireless channel measurements and models: trends and challenges. IEEE Vehicular Technology Magazine, 2020, 15 (4): 22- 32.
doi: 10.1109/MVT.2020.3018436
|
6 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation. Proc. of the IEEE Wireless Communications and Networking Conference, 2017. DOI: 10.1109/WCNC2017.7925924.
|
7 |
ZOU T T, XU W J, GAO H, et al. Low-complexity linear equalization for OTFS systems with rectangular waveforms. Proc. of the IEEE International Conference on Communications Workshops, 2021. DOI: 10.1109/ICCWorksnops50388.2021.9473771.
|
8 |
MOHAMMED S K Derivation of OTFS modulation from first principles. IEEE Trans. on Vehicular Technology, 2021, 70 (8): 7619- 7636.
doi: 10.1109/TVT.2021.3069913
|
9 |
WIFFEN F, SAYER L, BOCUS M Z, et al. Comparison of OTFS and OFDM in ray launched sub-6 GHz and mmWave line-of-sight mobility channels. Proc. of the IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2018: 73−79.
|
10 |
RAVITEJA P, VITERBO E, HONG Y OTFS performance on static multipath channels. IEEE Wireless Communications Letters, 2019, 8 (3): 745- 748.
doi: 10.1109/LWC.2018.2890643
|
11 |
SURABHI G D, AUGUSTINE R M, CHOCKALINGAM A On the diversity of uncoded OTFS modulation in doubly-dispersive channels. IEEE Trans. on Wireless Communications, 2019, 18 (6): 3049- 3063.
doi: 10.1109/TWC.2019.2909205
|
12 |
LI S Y, YUAN J H, YUAN W J, et al Performance analysis of coded OTFS systems over high-mobility channels. IEEE Trans. on Wireless Communications, 2021, 20 (9): 6033- 6048.
doi: 10.1109/TWC.2021.3071493
|
13 |
CHENG J Q, JIA C L, GAO H, et al. OTFS based receiver scheme with multi-antennas in high-mobility V2X systems. Proc. of the IEEE International Conference on Communications Workshops, 2020. DOI: 10.1109/ICCWorkshops49005.2020.9145313.
|
14 |
TIWARI S, DAS S S, RANGAMGARI V Low complexity LMMSE receiver for OTFS. IEEE Communications Letters, 2019, 23 (12): 2205- 2209.
doi: 10.1109/LCOMM.2019.2945564
|
15 |
YAN H, WANG M. A Low Complexity channel estimation scheme for orthogonal time frequency space (OTFS) system with synchronization errors. Proc. of the IEEE 6th International Conference on Computer and Communication Systems, 2021: 576−581.
|
16 |
SURABHI G D, CHOCKALINGAM A Low-complexity linear equalization for OTFS modulation. IEEE Communications Letters, 2019, 24 (2): 330- 334.
|
17 |
RAVITEJA P, PHAN K T, HONG Y, et al Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans. on Wireless Communications, 2018, 17 (10): 6501- 6515.
doi: 10.1109/TWC.2018.2860011
|
18 |
YUAN W J, WEI Z Q, YUAN J H, et al A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation. IEEE Trans. on Vehicular Technology, 2020, 69 (7): 7976- 7980.
doi: 10.1109/TVT.2020.2991443
|
19 |
XIAN D L, LIU Y, YANG L L, et al Gaussian approximate message passing detection of orthogonal time frequency space modulation. IEEE Trans. on Vehicular Technology, 2021, 70 (10): 10999- 11004.
doi: 10.1109/TVT.2021.3102673
|
20 |
LI L J, LIANG Y, FAN P Z, et al. Low complexity detection algorithms for OTFS under rapidly time-varying channel. Proc. of the IEEE 89th Vehicular Technology Conference, 2019. DOI: 10.1109/VTCSpring.2019.8746420.
|
21 |
XU X K, ZHAO M M, LEI M, et al. A damped GAMP detection algorithm for OTFS system based on deep learning. Proc. of the IEEE 92nd Vehicular Technology Conference, 2020. 10.1109/VTC2020-Fall49728.2020.9348493.
|
22 |
MURALI K R, CHOCKALINGAM A. On OTFS modulation for high-Doppler fading channels. Proc. of the Information Theory and Applications Workshop, 2018. DOI: 10.1109/ITA.2018.8503182.
|
23 |
THAJ T, VITERBO E Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems. IEEE Trans. on Vehicular Technology, 2020, 69 (12): 15606- 15622.
doi: 10.1109/TVT.2020.3044276
|
24 |
ELGABLI A, ELGHARIANI A, AGGARWAL V, et al A low-complexity detection algorithm for uplink massive MIMO systems based on alternating minimization. IEEE Wireless Communications Letters, 2019, 8 (3): 917- 920.
doi: 10.1109/LWC.2019.2899852
|
25 |
BECK A On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes. SIAM Journal on Optimization, 2015, 25 (1): 185- 209.
doi: 10.1137/13094829X
|
26 |
KUHN H W, TUCKER A W. Nonlinear programming Badel: Springer, 2013: 247−258.
|
27 |
THAJ T, VITERBO E, HONG Y General I/O relations and low-complexity universal MRC detection for All OTFS Variants. IEEE Access, 2022, 10, 96026- 96037.
|
28 |
LI L, WEI H, HUANG Y, et al. A simple two-stage equalizer with simplified orthogonal time frequency space modulation over rapidly time-varying channels. https://arxiv.org/abs/1709.02505.
|
29 |
3GPP TS 36.104 V8.6. 0.Lte E. Evolved universal terrestrial radio access (E-UTRA); base station (BS) radio transmission and reception.Sophia Antipolis: European Telecommunications Standards Institute, 2009.
|