1 |
EVANS J E. Ground clutter cancellation for the NEXRAD system. Lexington: Lincoln Laboratory, 1983: 98−114.
|
2 |
HUBBERT J C, DIXON M, ELLIS S M, et al. Weather radar ground clutter−part I: identification, modeling, and simulation. Journal of Atmospheric & Oceanic Technology, 2009, 26(7): 1165−1180.
|
3 |
HUBBERT J C, DIXON M, ELLIS S M, et al Weather radar ground clutter-part II: real-time identification and filtering. Journal of Atmospheric & Oceanic Technology, 2009, 26 (7): 1181- 1197.
|
4 |
NAI F, TORRES S M, PALMER R On the mitigation of wind turbine clutter for weather radars using range-Doppler spectral processing. IET Radar, Sonar & Navigation, 2013, 7 (2): 178- 190.
doi: 10.1049/iet-rsn.2012.0225
|
5 |
KONG F X, ZHANG Y, PALMER R Wind turbine clutter mitigation for weather radar by adaptive spectrum processing. Proc. of the IEEE Radar Conference, 2012, 471- 474.
|
6 |
UYSAL F, SELESNICK I W, PILLAI U, et al Dynamic clutter mitigation using sparse optimization. IEEE Aerospace and Electronic Systems Magazine, 2014, 29 (7): 37- 49.
doi: 10.1109/MAES.2014.130137
|
7 |
UYSAL F, SANKA S Mitigation of automotive radar interference. Proc. of the IEEE Radar Conference, 2018, 405- 410.
|
8 |
UYSAL F, PILLAI U, SELESNICK I W, et al Signal decomposition for wind turbine clutter mitigation. Proc. of the IEEE Radar Conference, 2014, 60- 63.
|
9 |
HE W K, SHI Y L, WANG X L. Wind turbine clutter mitigation based on matching pursuits. Proc. of the IET International Radar Conference, 2015. DOI: 10.1049/cp.2015.1160.
|
10 |
SHEN M W, WANG X D, WU D Wind turbine clutter mitigation for weather radar by an improved low-rank matrix recovery method. Progress in Electromagnetics Research M, 2020, 88 (1): 191- 199.
|
11 |
CHEN V C. The micro-Doppler effect in radar. Norwood: Artech House, 2011.
|
12 |
XIA P, TIAN X L Wind turbine clutter rejection based on morphological component analysis. Journal of Air Force Early Warning Academy, 2017, 31 (6): 12- 16.
|
13 |
WAN X Y, SHEN M W, WU D, et al A study on wind turbine clutter suppression based on morphological component separation. Modern Radar, 2021, 43 (3): 74- 79.
|
14 |
HE W K, LIU A, WANG X L, et al Modeling and analysis of wind turbine echoes of airborne array radar. Systems Engineering and Electronics, 2021, 43 (3): 666- 675.
|
15 |
HE W K, WU R B, WANG X L, et al The review and prospect on the influence evaluation and interference suppression of wind farms on radar equipment. Journal of Electronics & Information Technology, 2017, 39 (7): 1748- 1758.
|
16 |
HE W K, ZHAI Q P, GUO S S, et al Wind turbine radar clutter detection method based on micro-Doppler characteristics of wind turbine. Journal of Signal Processing, 2017, 33 (4): 496- 504.
|
17 |
STARCK J L, MOUDDEN Y, BOBIN J, et al Morphological component analysis. Proceedings of SPIE, 2005, 5914 (10): 1- 15.
|
18 |
BOBIN J, STARCK J L, FADILI J M, et al Morphological component analysis: an adaptive thresholding strategy. IEEE Trans. on Image Processing, 2007, 16 (11): 2675- 2681.
doi: 10.1109/TIP.2007.907073
|
19 |
FADILI M J, STARCK J L, BOBIN J, et al Image decomposition and separation using sparse representations: an overview. Proceedings of the IEEE, 2010, 98 (6): 983- 994.
doi: 10.1109/JPROC.2009.2024776
|
20 |
SELESNICK I W. The short-time Fourier transform and speech denoising. http://cnx.org/content/m32294/1.1/.
|
21 |
HU Y H, LI C, MENG K W, et al Group sparse optimization via $ {\ell _{p, q}} $ regularization . Journal of Machine Learning Research, 2017, 18 (1): 960- 1011.
|
22 |
PEYRE G, FADILI J Group sparsity with overlapping partition functions. Proc. of the 19th European Signal Processing Conference, 2011, 303- 307.
|
23 |
DENG W, YIN W T, ZHANG Y. Group sparse optimization by alternating direction method. Proceedings of SPIE. DOI: 10.1117/12.2024410.
|
24 |
CHEN P Y, SELESNICK I W Group-sparse signal denoising: non-convex regularization, convex optimization. IEEE Trans. on Signal Processing, 2014, 62 (13): 3464- 3478.
doi: 10.1109/TSP.2014.2329274
|
25 |
BACH F, JENATTON R, MAIRAL J, et al Structured sparsity through convex optimization. Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 2012, 27 (4): 450- 468.
|
26 |
USAMN M, PRIETO C, et al K-t group sparse: a method for accelerating dynamic MRI. Magnetic Resonance in Medicine, 2011, 66 (4): 1163- 1176.
doi: 10.1002/mrm.22883
|
27 |
BACH F R Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning Research, 2008, 9 (2): 1179- 1225.
|
28 |
MEIER L, GEER S, BHLMANN P, et al The group Lasso for logistic regression. Journal of the Royal Statistical Society:Series B, 2008, 70, 53- 71.
doi: 10.1111/j.1467-9868.2007.00627.x
|
29 |
DAUBECHIES I, DEFRISE M, MOL C D An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure & Applied Mathematics, 2003, 57 (11): 1413- 1457.
|
30 |
BIOUCAS-DIAS J M, FIGUEIREDO M A T A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. on Image Processing, 2007, 16 (12): 2992- 3004.
doi: 10.1109/TIP.2007.909319
|
31 |
CHEN P Y, SELESNICK I W Translation-invariant shrinkage/thresholding of group sparse signals. Signal Processing, 2014, 94 (1): 476- 489.
doi: 10.1016/j.sigpro.2013.06.011
|
32 |
SELESNICK I W. A derivation of the soft-thresholding function. https://www.semanticscholar.org/paper/A-Derivation-of-the-Soft-Thresholding-Function-Selesnick/32c265c127e6985e365b93158123655e13768ea4.
|