Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (3): 543-573.doi: 10.23919/JSEE.2023.000080
• COMPLEX SYSTEMS THEORY AND PRACTICE •
Kewei YANG(), Jichao LI(), Maidi LIU(), Tianyang LEI, Xueming XU(), Hongqian WU(), Jiaping CAO(), Gaoxin QI()
Received:
2022-11-23
Online:
2023-06-15
Published:
2023-06-30
Contact:
Kewei YANG
E-mail:kayyang27@nudt.edu.cn;ljcnudt@hotmail.com;lmdnudt@hotmail.com;xueming_x2m@163.com;wuhongqian19@nudt.edu.cn;jiapingcao@126.com;qi198@foxmail.com
About author:
Co-first author
Supported by:
Kewei YANG, Jichao LI, Maidi LIU, Tianyang LEI, Xueming XU, Hongqian WU, Jiaping CAO, Gaoxin QI. Complex systems and network science: a survey[J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 543-573.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Measurement of network invulnerability in three theories"
Category | Indicator | Review |
Graph theory | Connectivity Toughness Integrity Tenacity Scattering number Coefficient of expansion Algebraic connectivity | Graph theory-based network invulnerability usually has high computational complexity. It is unrealistic and unscientific to measure the invulnerability of complex networks with huge scales and uncertain connection relationships. |
Statistical physics | Network invulnerability of different attack strategies Seepage problems in generalized stochastic networks Network invulnerability with the repair mechanism Network invulnerability considering degree correlation condition Network invulnerability of the local world evolution model | While adapting to the current situation of the huge scale of network complexity, it also greatly expands the vision of the research on the resistance of complex networks, and relevant achievements are concentrated in the research fields of network learning, network propagation, network synchronization, etc. |
Characteristic spectrum | Natural connectivity Helmholtz free energy of network Physical implications of natural connectivity | It contains a lot of network topology information. Derivation and analysis of the network characteristic spectrum are helpful to deepen our understanding of some properties and behaviors of the network. |
Table 2
Cascading failure model"
Cascading failure model | Brief introduction |
Load capacity model | When encountering some accidental failure or intentional damage, a node in the network will exceed the limit capacity and cause failure, which will then lead to the overload increase of other nodes or connections and cause failure until the entire network is restabilized [ |
Sandpile model | Assume that for sand in the sand pile, the sand surface gradually becomes steeper with the gradual increase of sand and the probability of a large area collapse of the sand pile increases [ |
OPA model | This model is based on the power grid with increasing energy demand. It can summarize the dynamic evolution process of the power grid, the engineering response process of system failures, and the continuous updating process of generation capacity. At the same time, it defines two types of cascading failure types, each with different dynamic characteristics [ |
CASCADE model | The model has two assumptions: for the nodes, the initial load is given randomly, and each node fails according to random probability; when the load of a node exceeds the limit capacity, it causes the node to redistribute its load so that other nodes in the network can obtain an equal amount of load [ |
Table 3
Typical research on three kinds of optimization methods"
Optimization method | Typical research | |
Constructing the optimal network by analytical method | Valente et al. [ | |
Paul et al. [ | ||
Tanizawa et al. [ | ||
Optimizing destruction by edge enhancement | Beygelzimer et al. [ | |
Zhao et al. [ | ||
Cao et al. [ | ||
Optimizing destruction by edge reconnection | Non-guaranteed reconnection optimization | Liu et al. [ |
Netotea et al. [ | ||
Priester et al. [ | ||
Guaranteed reconnection optimization | Peixoto et al. [ | |
Herrmann et al. [ |
Table 4
Classification of network disintegration problems"
Perspective | Type | Related work |
Target object of disintegration | Node-based | [ |
Edge-based | [ | |
Type of disintegration network | For homogeneous networks | [ |
For heterogeneous networks | [ | |
For multilayer networks | [ | |
Constraints of disintegration | Under the homogeneous cost constraint | [ |
Under the heterogeneous cost constraint | [ |
Table 5
Classification of network disintegration methods and their typical methods"
Classification | Typical method | Advantages and disadvantages |
Methods based on mathematical programming | Branch and bound method Mixed iterative rounding method Univariate decomposition Dynamic programming | The optimal network disintegration scheme can be obtained. It has high requirements for the objective function and constraint conditions and is not applicable to large-scale networks. |
Methods based on the centrality index | Degree centrality k-core centrality Intermediate centrality Proximity centrality | Simple and easy to implement, but the important node set under a single index is not necessarily the optimal node removal set. |
Methods based on heuristic algorithms | Tabu search algorithm Genetic algorithm Simulated annealing algorithm Random greedy adaptive search algorithm | A good network disintegration scheme can be obtained that has high robustness and wide applicability. The time complexity is high. |
Methods based on reinforcement learning | Q-learning Deep Q-network (DQN) | It has nothing to do with specific knowledge and rules and is applicable to all kinds of problems; it is not interpretable. |
43 | YANG Y H, LI J H, SHEN D, et al Evolutionary dynamics analysis of complex network with fusion nodes and overlap edges. Journal of Systems Engineering and Electronics, 2018, 29 (3): 549- 559. |
44 | CUYPERE E D, TURCK K D, WITTEVRONGEL S, et al. Markovian SIR model for opinion propagation. Proc. of the 25th International Teletraffic Congress, 2013: 1−7. |
45 | QIU L Q, JIA W, NIU W N, et al Sir-im: sir rumor spreading model with influence mechanism in social networks. Soft Computing, 2020, 25, 13949- 13958. |
46 | CHEN T W, MA B C, WANG J N SIRS contagion model of food safety risk. Journal of Food Safety, 2017, 38 (1): e12410. |
47 | REIA S M, FONTANARI J F A SIR epidemic model for citation dynamics. European Physical Journal Plus, 2020, 136 (2): 207. |
48 |
JALILI M, SALEHZADEH-YAZDI A, ASGARI Y, et al CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. PLoS One, 2015, 10, e0143111.
doi: 10.1371/journal.pone.0143111 |
49 | LIU J G, REN Z M, GUO Q, et al Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62 (17): 9- 18. |
50 |
LÜ L Y, CHEN D B, REN X L, et al Vital nodes identification in complex networks. Physics Reports, 2016, 650, 1- 63.
doi: 10.1016/j.physrep.2016.06.007 |
51 |
BONACICH P Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 1972, 2, 113- 120.
doi: 10.1080/0022250X.1972.9989806 |
52 |
CHEN D B, LÜ L Y, SHANG M S, et al Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 2012, 391, 1777- 1787.
doi: 10.1016/j.physa.2011.09.017 |
53 |
KITSAK M, GALLOS L K, HAVLIN S, et al Identification of influential spreaders in complex networks. Nature Physics, 2010, 6, 888- 893.
doi: 10.1038/nphys1746 |
54 | FREEMAN L C Centrality in social networks: conceptual clarification. Social Networks, 1979, 1, 215- 239. |
55 |
FREEMAN L C A set of measures of centrality based on betweenness. Sociometry, 1977, 40, 35- 41.
doi: 10.2307/3033543 |
56 |
ESTRADA E, RODRIGUEZ-VELAZQUEZ J A Subgraph centrality and clustering in complex hyper-networks. Physica A: Statistical Mechanics and its Applications, 2006, 364, 581- 594.
doi: 10.1016/j.physa.2005.12.002 |
57 |
BRIN S, PAGE L Reprint of: the anatomy of a large-scale hypertextual web search engine. Computer Networks, 2012, 56, 3825- 3833.
doi: 10.1016/j.comnet.2012.10.007 |
58 |
LÜ L Y, ZHANG Y C, YEUNG C H, et al Leaders in social networks, the delicious case. PLoS One, 2011, 6, e21202.
doi: 10.1371/journal.pone.0021202 |
59 |
KLEINBERG J M Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46, 604- 632.
doi: 10.1145/324133.324140 |
60 |
LEMPEL R, MORAN S The stochastic approach for link-structure analysis (SALSA) and the TKC effect1Abridged version1. Computer Networks, 2000, 33, 387- 401.
doi: 10.1016/S1389-1286(00)00034-7 |
61 | TAN Y J, WU J, DENG H Z Evaluation method for node importance based on node contraction in complex networks. Systems Engineering Theory and Practice, 2006, 26 (11): 79- 84. |
62 |
DANGALCHEV C Residual closeness in networks. Physica A: Statistical Mechanics and its Applications, 2006, 365 (2): 556- 564.
doi: 10.1016/j.physa.2005.12.020 |
63 |
ULLAH A, WANG B, SHENG J F, et al Identification of nodes influence based on global structure model in complex networks. Scientific Reports, 2021, 11, 6173.
doi: 10.1038/s41598-021-84684-x |
64 |
SHENG J F, DAI J Y, WANG B, et al Identifying influential nodes in complex networks based on global and local structure. Physica A: Statistical Mechanics and its Applications, 2020, 541, e123262.
doi: 10.1016/j.physa.2019.123262 |
65 |
ULLAH A, WANG B, SHENG J F, et al Identifying vital nodes from local and global perspectives in complex networks. Expert Systems with Applications, 2021, 186, e115778.
doi: 10.1016/j.eswa.2021.115778 |
1 | BERTALANFFY L V General system theory: foundations, development, applications. IEEE Trans. on Systems, Man, and Cybernetics, 1974, SMC-4 (6): 592. |
2 | ASHBY W R. An introduction to cybernetics. London: Chapman & Hall Ltd, 1964. |
3 | THOMAS M. Elements of information theory. New Jersey: John Wiley & Sons, 1999. |
4 | PRIGOGINE I, RENE L. Theory of dissipative structures. HAKEN H ed. Synergetics. Wiesbaden: Springer Fachmedien, 1973: 124−135. |
5 | HAKEN H Synergetics. Physics Bulletin, 2007, 28 (9): 412. |
6 | ZEEMAN E C. Catastrophe theory. Berlin: Springer, 1979. |
7 | LADYMAN J, JAMES L, KAROLINE W. What is a complex system? European Journal for Philosophy of Science, 2013, 3(1): 33−67. |
8 | SIEGENFELD A F, BAR-YAM Y An introduction to complex systems science and its applications. Complexity, 2020, 2020, 1- 16. |
9 | YU M G, NIU Y J, LIU X D, et al. Adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game. Journal of Systems Engineering and Electronics, 2023. DOI: 10.23919/JSEE.2023.000041. |
10 |
CAVAGNA A, CIMARELLI A, GIARDINA I, et al Scale-free correlations in starling flocks. Proceedings of the National Academy of Sciences, 2010, 107 (26): 11865- 11870.
doi: 10.1073/pnas.1005766107 |
11 |
CHINELLATO D D, EPSTEIN I R, BRAHA D, et al Dynamical response of networks under external perturbations: exact results. Journal of Statistical Physics, 2015, 159 (2): 221- 230.
doi: 10.1007/s10955-015-1189-x |
12 | SHI S, ZHANG G S, MIN H F, et al Exact uncertainty compensation of linear systems by continuous fixed-time output-feedback controller. Journal of Systems Engineering and Electronics, 2022, 33 (3): 706- 715. |
66 |
LIU J G, REN Z M, GUO Q Ranking the spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications, 2013, 392, 4154- 4159.
doi: 10.1016/j.physa.2013.04.037 |
67 |
LU L Y, ZHOU T, ZHANG Q M, et al The H-index of a network node and its relation to degree and coreness. Nature Communications, 2016, 7, e10168.
doi: 10.1038/ncomms10168 |
68 |
CHEN X, TAN M, ZHAO J, et al Identifying influential nodes in complex networks based on a spreading influence related centrality. Physica A: Statistical Mechanics and its Applications, 2019, 536, e122481.
doi: 10.1016/j.physa.2019.122481 |
69 |
DONG Z H, CHEN Y Z, TRICCO T S, et al Hunting for vital nodes in complex networks using local information. Scientific Reports, 2021, 11, e9190.
doi: 10.1038/s41598-021-88692-9 |
70 | QIAO T, SHAN W, YU G J, et al A novel entropy-based centrality approach for identifying vital nodes in weighted networks. Entropy, 2018, 20 (4): e20040261. |
71 |
XU X, ZHU C, WANG Q Y, et al Identifying vital nodes in complex networks by adjacency information entropy. Scientific Reports, 2020, 10, e2691.
doi: 10.1038/s41598-020-59616-w |
72 | LIU X. Research on evaluation algorithms of node importance in directed-weighted networks. Lanzhou: Northwest Normal University, 2020. (in Chinese) |
73 |
QI X Q, FULLER E, WU Q, et al Laplacian centrality: a new centrality measure for weighted networks. Information Sciences, 2012, 194, 240- 253.
doi: 10.1016/j.ins.2011.12.027 |
74 |
FEI L G, ZHANG Q, DENG Y Identifying influential nodes in complex networks based on the inverse-square law. Physica A: Statistical Mechanics and its Applications, 2018, 512, 1044- 1059.
doi: 10.1016/j.physa.2018.08.135 |
75 |
MA L L, MA C, ZHANG H F, et al Identifying influential spreaders in complex networks based on gravity formula. Physica A: Statistical Mechanics and its Applications, 2016, 451, 205- 212.
doi: 10.1016/j.physa.2015.12.162 |
76 | QIU Z H, FAN T L, LI M, et al Identifying vital nodes by Achlioptas process. New Journal of Physics, 2021, 23 (3): e033036. |
77 |
LALOU M, TAHRAOUI M A, KHEDDOUCI H The vital node detection problem in networks: a survey. Computer Science Review, 2018, 28, 92- 117.
doi: 10.1016/j.cosrev.2018.02.002 |
13 | XU B, BAI G H, ZHANG Y A, et al Failure analysis of unmanned autonomous swarm considering cascading effects. Journal of Systems Engineering and Electronics, 2022, 33 (3): 759- 770. |
14 |
LI R Q, DONG L, ZHANG J, et al Simple spatial scaling rules behind complex cities. Nature Communications, 2017, 8 (1): 1841.
doi: 10.1038/s41467-017-01882-w |
15 |
JACKSON J C, RAND D, LEWIS K, et al Agent-based modeling: a guide for social psychologists. Social Psychological and Personality Science, 2017, 8 (4): 387- 395.
doi: 10.1177/1948550617691100 |
16 | AIT-AMIR B, PHILIPPE P, ABDELKHALAK E H. Meta-model development. Embedded Mechatronic Systems 2, 2020. DOI: 10.1016/B978-1-78548-014-0.50006-2. |
17 | THONG W J, AMEEDEEN M A A survey of Petri net tools. Advanced Computer and Communication Engineering Technology, 2015, 315, 537- 551. |
18 | WEISBUCH G. Complex systems dynamics. Boca Raton: CRC Press, 2018. |
19 | BARABASI A. Network science. Cambridge: Cambridge University Press, 2013. |
20 | WANG X F, LI X, CHEN G R. Theory and application of complex networks. Beijing: Tsinghua University Press, 2006. (in Chinese) |
21 |
LI L B, FAN Y, ZENG A, et al Binary opinion dynamics on signed networks based on Ising model. Physica A: Statistical Mechanics and its Applications, 2019, 525, 433- 442.
doi: 10.1016/j.physa.2019.03.011 |
22 | PORTER M A Nonlinearity+ networks: a 2020 vision. Emerging Frontiers in Nonlinear Science, 2020, 32, 131- 159. |
23 | BOCCALETTI S, LATORA V, MORENO Y, et al Complex networks: structure and dynamics. Physics Reports, 2006, 424 (4/5): 175- 308. |
24 | WU X W, LI L, QU Y G Modelling and analysis of river networks based on complex networks theory. Advanced Materials Research, 2013, 756, 2728- 2733. |
78 | BIAN R, KOH Y S, DOBBIE G, et al Identifying top-k nodes in social networks. ACM Computing Surveys, 2020, 52, 1- 33. |
79 |
REN T, LI Z, QI Y, et al Identifying vital nodes based on reverse greedy method. Scientific Reports, 2020, 10, 4826.
doi: 10.1038/s41598-020-61722-8 |
80 |
ZHONG J L, ZHANG F M, LI Z X Identification of vital nodes in complex network via belief propagation and node reinsertion. IEEE Access, 2018, 6, 29200- 29210.
doi: 10.1109/ACCESS.2018.2843532 |
81 |
HU Y L, LI J C, RUAN Y R Finding influencers in complex networks: a novel method based on information theory. IEEE Systems Journal, 2022, 16 (2): 3372- 3380.
doi: 10.1109/JSYST.2021.3119081 |
82 | TAN Y J, WU J, DENG H Z Progress in invulnerability of complex networks. Journal of University of Shanghai for Science and Technology, 2011, 33 (6): 653- 668. |
83 |
CHVATAL V Tough graphs and Hamiltonian circuits. Discrete Mathematics, 1973, 5, 215- 228.
doi: 10.1016/0012-365X(73)90138-6 |
84 | BAREFOOT C A, ENTRINGER R, SWART H Vulnerability in graphs: a comparative survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1987, 1, 13- 22. |
85 | COZZEN M, MOAZZAMI D, STUECKLE S. The tenacity of a graph. Proc. of the 7th International Conference on the Theory and Applications of Graphs, 1995: 1111−1122. |
86 |
CHOUDUM S A, PRIYA N Tenacity of complete graph products and grids. Networks, 1999, 34 (3): 192- 196.
doi: 10.1002/(SICI)1097-0037(199910)34:3<192::AID-NET3>3.0.CO;2-R |
87 |
JUNG H A Class of posets and corresponding comparability graphs. Journal of Combinatorial Theory Series B, 1978, 24 (2): 125- 133.
doi: 10.1016/0095-8956(78)90013-8 |
88 |
ZHANG S G, LI X L, HAN X L Computing the scattering number of graphs. International Journal of Computer Mathematics, 2002, 79 (2): 179- 187.
doi: 10.1080/00207160211919 |
89 | BASSALYGO L A, PINSKER M S The complexity of an optimal non-blocking commutation scheme without reorganization. Problems of Information Transmission, 1973, 9 (1): 84- 87. |
25 | HUYNH-THU V A, SANGUINETTI G. Gene regulatory network inference: an introductory survey. https://doi.org/10.48550/arXiv.1801.04087. |
26 |
WANG L N, WANG K, SHEN J L Weighted complex networks in urban public transportation: modeling and testing. Physica A: Statistical Mechanics and its Applications, 2020, 545, 123498.
doi: 10.1016/j.physa.2019.123498 |
27 |
TAM W M, LAU F C M, TSE C K Complex-network modeling of a call network. IEEE Trans. on Circuits and Systems I: Regular Papers, 2009, 56 (2): 416- 429.
doi: 10.1109/TCSI.2008.925947 |
28 | BORRETT S R, LAU M K enaR: an R package for ecosystem network analysis. Methods in Ecology and Evolution, 2015, 5 (11): 1206- 1213. |
29 | LI J C. Key technologies of heterogeneous information networks data mining. Changsha: National University of Defense Technology, 2019. (in Chinese) |
30 | XING J C, CHEN C X, CHEN X R. Research progress on joint operation modeling based on complex networks. Proc. of the Chinese Control and Decision Conference, 2019: 2095−2099. |
31 | LI C T, LIN S D. Centrality analysis, role-based clustering, and egocentric abstraction for heterogeneous social networks. Proc. of the International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, 2013: 1−10. |
32 | LATHA V P, RIHAN F A, RAKKIYAPPAN R, et al A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks. Journal of Computational & Applied Mathematics, 2017, 339, 134- 146. |
33 |
BANCAL J D, PASTOR-SATORRAS R Steady-state dynamics of the forest fire model on complex networks. The European Physical Journal B, 2010, 76, 109- 121.
doi: 10.1140/epjb/e2010-00165-7 |
34 | ALONSO M, TURANZAS J, AMARIS H, et al Cyber-physical vulnerability assessment in smart grids based on multilayer complex networks. Sensors, 2021, 17, 5826. |
35 |
CHEN Y, MO D X Community detection for multilayer weighted networks. Information Sciences, 2022, 595, 119- 141.
doi: 10.1016/j.ins.2021.12.011 |
36 |
YANG Y, XU K J, HONG C Network dynamics on the Chinese air transportation multilayer network. International Journal of Modern Physics C, 2021, 32 (5): 2150070.
doi: 10.1142/S0129183121500704 |
37 | HANNEKE S, FU W, XING E. Discrete temporal models of social networks. Proc. of the Conference on Statistical Network Analysis, 2006: 115–125. |
38 |
JIANG S, CHEN H C NATERGM: a model for examining the role of nodal attributes in dynamic social media networks. IEEE Trans. on Knowledge and Data Engineering, 2016, 28 (3): 729- 740.
doi: 10.1109/TKDE.2015.2493549 |
39 | ZENO G, FOND T L, NEVILLE J. Dynamic network modeling from motif-activity. Proc. of the Web Conference 2020, 2020: 390−397. |
40 |
TAGHVAEI A, GEORGIOU T T, NORTON L Fractional SIR epidemiological models. Scientific Reports, 2020, 10, 20882.
doi: 10.1038/s41598-020-77849-7 |
41 |
JARDON-KOJAKHMETOV H, KUEHN C, PUGLIESE A, et al A geometric analysis of the SIR, SIRS and SIRWS epidemiological models. Nonlinear Analysis Real World Applications, 2021, 58, 103220.
doi: 10.1016/j.nonrwa.2020.103220 |
42 | WU J Y, ZHANG X W, ZHU X B, et al. A variant SIRS virus spreading model. Proc. of the International Conference on Computer Systems, Electronics and Control, 2017: 121−124. |
90 | PINSKER M S. On the complexity of a concentrator. Proc. of the 7th International Teletraffic Conference, 1973: 1−4. |
91 |
FIEDLER M Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 1973, 23 (2): 298- 305.
doi: 10.21136/CMJ.1973.101168 |
92 |
WU J, BARAHONA M, TAN Y J, et al Natural connectivity of complex networks. Chinese Physics Letters, 2010, 27 (7): 078902.
doi: 10.1088/0256-307X/27/7/078902 |
93 |
COHEN R, EREZ K, BEN-AVRAHAM D, et al Resilience of the Internet to random breakdowns. Physical Review Letters, 2000, 85 (21): 4626- 4628.
doi: 10.1103/PhysRevLett.85.4626 |
94 |
NEWMAN M E J, STROGATZ S H, WATTS D J Random graphs with arbitrary degree distributions and their applications. Physical Review E, 2001, 64 (2): 26118.
doi: 10.1103/PhysRevE.64.026118 |
95 | BROADBENT S R, HAMMERSLEY J M Percolation processes: I. crystals and mazes. Proceedings of the Cambridge Philological Society, 1957, 53, 629- 641. |
96 |
CHI L P, YANG C B, CAI X Stability of random networks under evolution of attack and repair. Chinese Physics Letters, 2006, 23 (1): 263- 266.
doi: 10.1088/0256-307X/23/1/076 |
97 |
VAZQUEZ A, MORENO Y Resilience to damage of graphs with degree correlations. Physical Review E, 2003, 67 (1): 015101.
doi: 10.1103/PhysRevE.67.015101 |
98 |
SUN S, LIU Z X, CHEN Z Q, et al Error and attack tolerance of evolving networks with local preferential attachment. Physica A, 2007, 373, 851- 860.
doi: 10.1016/j.physa.2006.05.049 |
99 | WANG J W, RONG L L Cascade-based attack vulnerability on the US power grid. Safety Sicence, 2009, 47, 1332- 1336. |
100 |
CARRERAS B A, LYNCH V E Complex dynamics of blackouts in power transmission systems. Chaos, 2004, 14 (3): 643- 652.
doi: 10.1063/1.1781391 |
101 | DOBSON I, CHEN J, THROP J S, et al. Examining criticality of blackouts in power system models with cascading events. Proc. of the 35th Annual Hawaii International Conference on System Sciences, 2002. DOI: 10.1109/HICSS.2002.993975. |
102 |
WANG J W, RONG L L, ZHANG L, et al Attack vulnerability of scale-free networks due to cascading failures. Physica A, 2008, 387, 6671- 6678.
doi: 10.1016/j.physa.2008.08.037 |
103 | MOTTER A E, LAI Y C Cascade-based attacks on complex networks. Physical Review E: Statistical Nonlinear and Soft Matter Physics, 2002, 66 (6): 1- 4. |
104 | WU J, TAN S Y, TAN Y J Analysis of invulnerability in complex networks based on natural connectivity. Complex Systems and Complexity Science, 2014, 11 (1): 77- 86. |
105 | SUN Y, YAO P Y, ZHANG J Y Node attack strategy of complex networks based on optimization theory. Journal of Electronics & Information Technology, 2017, 39 (3): 518524. |
106 | ALBERT R, JEONG H, BARABSI A L. Diameter of the world-wide web. Nature, 1999, 401(6749): 130−131. |
107 |
VALENTE A X C N, SARKAR A, STONE H A Two-peak and three-peak optimal complex networks. Physical Review Letters, 2004, 92 (11): 118702.
doi: 10.1103/PhysRevLett.92.118702 |
108 |
PAUL G, TANIZAWA T, HAVLIN S, et al Optimization of robustness of complex networks. The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 38 (2): 187- 191.
doi: 10.1140/epjb/e2004-00112-3 |
109 |
TANIZAWA T, PAUL G, COHEN R, et al Optimization of network robustness to waves of targeted and random attacks. Physical Review E, 2005, 71 (4): 047101.
doi: 10.1103/PhysRevE.71.047101 |
110 | BEYGELZIMER A, GRINSTEIN G, LINSKER R, et al Improving network robustness by edge modification. Physica A: Statistical Mechanics and its Applications, 2005, 357 (3): 593- 612. |
111 |
ZHAO J C, XU K Enhancing the robustness of scale-free networks. Physics A: Mathematical and Theoretical, 2009, 42 (19): 195003.
doi: 10.1088/1751-8113/42/19/195003 |
112 | CAO X B, HONG C, DU W B, et al Improving the network robustness against cascading failures by adding links. Chaos, Solitons & Fractals, 2013, 57, 35- 40. |
113 |
LIU J G, WANG Z T, DANG Y Z Optimization of robustness of scale-free network to random and targeted attacks. Modern Physics Letters B, 2005, 19 (16): 785- 792.
doi: 10.1142/S0217984905008773 |
114 |
NETOTEA S, PONGOR S Evolution of robust and efficient system topologies. Cellular Immunology, 2006, 244 (2): 80- 83.
doi: 10.1016/j.cellimm.2006.12.007 |
115 |
PRIESTER C, SCHMITT S, PEIXOTO T P Limits and trade-offs of topological network robustness. PLoS One, 2014, 9 (9): e108215.
doi: 10.1371/journal.pone.0108215 |
116 |
PEIXOTO T P, BORNHOLDT S Evolution of robust network topologies: emergence of central backbones. Physical Review Letters, 2012, 109 (11): 118703.
doi: 10.1103/PhysRevLett.109.118703 |
117 | HERRMANN H J, SCHNEIDER C M, MOREIRA A A, et al. Onion-like network topology enhances robustness against malicious attacks. Journal of Statistical Mechanics: Theory and Experiment, 2011. DOI:10.1088/1742-5468/2011/01/P01027. |
118 | FU J L, SUN D Y, XIAO J, et al Review of the research on the terrorist networks based on social network analysis. Systems Engineering-Theory & Practice, 2013, 33 (9): 2177- 2186. |
119 | CARLEY K M, REMINGA J, KAMNEVA N. Destabilizing terrorist networks. Proc. of the 8th International Command and Control Research and Technology Symposium, 2003: 1−6. |
120 | CHAURASIA N, TIWARI A Efficient algorithm for destabilization of terrorist networks. International Journal of Information Technology and Computer Science, 2013, 12, 21- 30. |
121 | SUN H C, XU M D, XU X K Infection and prevention of COVID-19 in schools based on real life interpersonal contact data. Journal of University Electronic Science and Technology of China, 2020, 49 (3): 399- 407. |
122 | JIN W X. SoS-Ops M&S based on the complex network. Beijing: Publishing House of Electronics Industry, 2010. (in Chinese) |
123 | ANGGRAINI D, MADENDA S, WIBOWO E P, et al. Network disintegration in criminal network. Proc. of the 11th International Conference on Signal-Image Technology & Internet-Based Systems, 2015: 192−199. |
124 |
BRIGHT D, GREENHILL C, BRITZ T, et al Criminal network vulnerabilities and adaptations. Global Crime, 2017, 18 (4): 424- 441.
doi: 10.1080/17440572.2017.1377614 |
125 |
MALAVIYA A, RAINWATER C, SHARKEY T Multi-period network interdiction problems with applications to city-level drug enforcement. IIE Transactions, 2012, 44 (5): 368- 380.
doi: 10.1080/0740817X.2011.602659 |
126 |
MICHALOPOULOS D P, BARNES J W, MORTON D P Prioritized interdiction of nuclear smuggling via tabu search. Optimization Letters, 2015, 9 (8): 1477- 1494.
doi: 10.1007/s11590-014-0829-4 |
127 |
QUAYLE A P, SIDDIQUI A S, JONES S J M Preferential network perturbation. Physica A, 2006, 371, 823- 840.
doi: 10.1016/j.physa.2006.03.031 |
128 | TRIPATHY R M, BAGCHI A, MEHTA S. A study of rumor control strategies on social networks. Proc. of the 19th ACM International Conference on Information and Knowledge Management, 2010: 1817−1820. |
129 | KOBAYASHI T, HASUI K Efficient immunization strategies to prevent financial contagion. Scientific Reports, 2014, 4 (1): 1- 7. |
130 | LI J J, ZHAO D L, GE B F, et al Disintegration of operational capability of heterogeneous combat networks under incomplete information. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2018, 50 (12): 5172- 5179. |
131 |
LI Q, LIU S Y, YANG X S Neighborhood information based probabilistic algorithm for network disintegration. Expert Systems with Applications, 2020, 139, 112853.
doi: 10.1016/j.eswa.2019.112853 |
132 | DENG Y, WU J, XIAO Y, et al Optimal disintegration strategy with heterogeneous costs in complex networks. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2018, 50 (8): 2905- 2913. |
133 |
DENG Y, WU J, XIAO Y, et al Efficient disintegration strategies with cost constraint in complex networks: the crucial role of nodes near average degree. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28 (6): 061101.
doi: 10.1063/1.5029984 |
134 |
QI M Z, DENG Y, DENG H Z, et al Optimal disintegration strategy in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28 (12): 121104.
doi: 10.1063/1.5078449 |
135 |
NIE S, WANG X W, ZHANG H F, et al Robustness of controllability for networks based on edge attack. PLoS One, 2014, 9 (2): e89066.
doi: 10.1371/journal.pone.0089066 |
136 |
WANG J W, RONG L L Robustness of the western united states power gridunder edge attack strategies due to cascading failures. Safety Science, 2011, 49 (6): 807- 812.
doi: 10.1016/j.ssci.2010.10.003 |
137 |
HAO Y C, JIA L M, WANG Y H Edge attack strategies in interdependent scale free networks. Physica A: Statistical Mechanics and its Applications, 2020, 540, 122759.
doi: 10.1016/j.physa.2019.122759 |
138 | ZHANG X K, WU J, WANG H, et al. Optimization of disintegration strategy for multi edges complex networks. Proc. of the IEEE Congress on Evolutionary Computation, 2016: 522–528. |
139 |
REN X L, GLEINIG N, HELBING D, et al Generalized network dismantling. Proceedings of the National Academy of Sciences, 2019, 116 (14): 6554- 6559.
doi: 10.1073/pnas.1806108116 |
140 | LI J J, JIANG J, YANG K W, et al Research on functional robustness of heterogeneous combat networks. IEEE Systems Journal, 2018, 13 (2): 1487- 1495. |
141 |
QI M Z, BAI Y, LI X H, et al Optimal disintegration strategy in multiplex networks under layer node-based attack. Applied Sciences, 2019, 9 (19): 3968.
doi: 10.3390/app9193968 |
142 |
HAN J H, TANG S Y, SHI Y F, et al An efficient layer node attack strategy to dismantle large multiplex networks. The European Physical Journal B, 2021, 94, 1- 8.
doi: 10.1140/epjb/s10051-020-00008-4 |
143 | MALIK H A M, ABID F, WAHIDDIN M R, et al Robustness of dengue complex network under targeted versus random attack. Complexity, 2017, 2017, 2515928. |
144 |
BELLINGERI M, BEVACQUA D, SCOTOGNELLA F, et al Efficacy of local attack strategies on the Beijing road complex weighted network. Physica A: Statistical Mechanics and its Applications, 2018, 510, 316- 328.
doi: 10.1016/j.physa.2018.06.127 |
145 |
YAN D C, XIE W X, ZHANG Y W, et al Hypernetwork dismantling via deep reinforcement learning. IEEE Trans. on Network Science and Engineering, 2022, 9 (5): 3302- 3315.
doi: 10.1109/TNSE.2022.3174163 |
146 |
DENG Y, WU J, QI M Z, et al Optimal disintegration strategy in spatial networks with disintegration circle model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29 (6): 061102.
doi: 10.1063/1.5093201 |
147 | SUN J B, LI J C, YOU Y Q, et al Combat network link prediction based on embedding learning. Journal of Systems Engineering and Electronics, 2022, 33 (2): 345- 353. |
148 | FARAMONDI L, OLIVA G, SETOLA R, et al. Performance analysis of single and multi-objective approaches for the critical node detection problem. Proc. of the International Conference on Optimization and Decision Science, 2017: 315−324. |
149 | BORGATTI S P Identifying sets of key players in a social network. Computational & Mathematical Organization Theory, 2006, 12, 21- 34. |
150 | VAN DER ZWAAN R, BERGER A, GRIGORIEV A. How to cut a graph into many pieces. Proc. of the International Conference on Theory and Applications of Models of Computation, 2011: 184−194. |
151 |
SHEN S Q, SMITH J C Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks, 2012, 60 (2): 103- 119.
doi: 10.1002/net.20464 |
152 |
ALBERT R, JEONG H, BARABASI A L Error and attack tolerance of complex networks. Nature, 2000, 406 (6794): 378- 382.
doi: 10.1038/35019019 |
153 | ESTRADA E. The structure of complex networks: theory and applications. Oxford: Oxford University Press, 2012. |
154 |
COHEN R, HAVLIN S, BEN-AVRAHAM D Efficient immunization strategies for computer networks and populations. Physical Review Letters, 2003, 91 (24): 247901.
doi: 10.1103/PhysRevLett.91.247901 |
155 |
HOLME P Efficient local strategies for vaccination and network attack. Europhysics Letters, 2004, 68 (6): 908.
doi: 10.1209/epl/i2004-10286-2 |
156 |
GALLOS L K, LILJEROS F, ARGYRAKIS P, et al Improving immunization strategies. Physical Review E, 2007, 75 (4): 045104.
doi: 10.1103/PhysRevE.75.045104 |
157 | HEWETT R. Toward identification of key breakers in social cyber-physical networks. Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2011: 2731−2736. |
158 | ORTIZ-ARROYO D, HUSSAIN D M A. An information theory approach to identify sets of key players. Proc. of the European Conference on Intelligence and Security Informatics, 2008: 15−26. |
159 | ARULSELVAN A, COMMANDER C W, ELEFTERIADOU L, et al Detecting critical nodes in sparse graphs. Computers & Operations Research, 2009, 36 (7): 2193- 2200. |
160 |
DI SUMMA M, GROSSO A, LOCATELLI M Branch and cut algorithms for detecting critical nodes in undirected graphs. Computational Optimization and Applications, 2012, 53, 649- 680.
doi: 10.1007/s10589-012-9458-y |
161 |
VEREMYEV A, BOGINSKI V, PASILIAO E L Exact identification of critical nodes in sparse networks via new compact formulations. Optimization Letters, 2014, 8, 1245- 1259.
doi: 10.1007/s11590-013-0666-x |
162 |
HOLME P, KIM B J, YOON C N, et al Attack vulnerability of complex networks. Physical Review E, 2002, 65 (5): 056109.
doi: 10.1103/PhysRevE.65.056109 |
163 | ZHOU J, YU X H, LU J A Node importance in controlled complex networks. IEEE Trans. on Circuits and Systems II: Express Briefs, 2018, 66 (3): 437- 441. |
164 |
YU Y, DENG Y, TAN S Y, et al Efficient disintegration strategy in directed networks based on tabu search. Physica A: Statistical Mechanics and its Applications, 2018, 507, 435- 442.
doi: 10.1016/j.physa.2018.05.079 |
165 |
LOZANO M, GARCIA-MARTINEZ C, RODRIGUEZ F J, et al Optimizing network attacks by artificial bee colony. Information Sciences, 2017, 377, 30- 50.
doi: 10.1016/j.ins.2016.10.014 |
166 |
FARAMONDI L, SETOLA R, PANZIERI S, et al Finding critical nodes in infrastructure networks. International Journal of Critical Infrastructure Protection, 2018, 20, 3- 15.
doi: 10.1016/j.ijcip.2017.11.004 |
167 | LI K W, ZHANG T, WANG R Research reviews of combinatorial optimization methods based on deep reinforcement learning. Acta Automatica Sinica, 2020, 41, 1- 17. |
168 |
FAN C J, ZENG L, SUN Y Z, et al Finding key players in complex networks through deep reinforcement learning. Nature Machine Intelligence, 2020, 2 (6): 317- 324.
doi: 10.1038/s42256-020-0177-2 |
169 | YANG Q, ZHANG Y N, ZHOU Y Q, et al A review of complex network theory and its application in the resilience of public transportation systems. China Journal of Highway and Transport, 2022, 35 (4): 215- 229. |
170 | FRACCASCIA L, GIANNOCCARO I, ALBINO V Resilience of complex systems: state of the art and directions for future research. Complexity, 2018, 2018, 3421529. |
171 |
HOLLING C S Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973, 4 (1): 1- 23.
doi: 10.1146/annurev.es.04.110173.000245 |
172 | HOLLING C S Engineering resilience versus ecological resilience. Engineering within Ecological Constraints, 1996, 31, 32. |
173 |
HOLLING C S Understanding the complexity of economic, ecological, and social systems. Ecosystems, 2001, 4, 390- 405.
doi: 10.1007/s10021-001-0101-5 |
174 |
ELMQVIST T, ANDERSSON E, FRANTZESKAKI N, et al Sustainability and resilience for transformation in the urban century. Nature Sustainability, 2019, 2 (4): 267- 273.
doi: 10.1038/s41893-019-0250-1 |
175 |
MIARA A, MACKNICK J E, VOROSMARTY C J, et al Climate and water resource change impacts and adaptation potential for US power supply. Nature Climate Change, 2017, 7 (11): 793- 798.
doi: 10.1038/nclimate3417 |
176 |
GANIN A A, KITSAK M, MARCHESE D, et al Resilience and efficiency in transportation networks. Science Advances, 2017, 3 (12): e1701079.
doi: 10.1126/sciadv.1701079 |
177 |
WANG W P, YANG S N, STANLEY H E, et al Local floods induce large-scale abrupt failures of road networks. Nature Communications, 2019, 10 (1): 2114.
doi: 10.1038/s41467-019-10063-w |
178 |
HYNES W, TRUMP B D, KIRMAN A, et al Systemic resilience in economics. Nature Physics, 2022, 18 (4): 381- 384.
doi: 10.1038/s41567-022-01581-4 |
179 |
MAHONEY E, GOLAN M, KURTH M, et al Resilience-by-design and resilience-by-intervention in supply chains for remote and indigenous communities. Nature Communications, 2022, 13 (1): 1124.
doi: 10.1038/s41467-022-28734-6 |
180 |
BUCHANAN R K, GOERGER S R, RINAUDO C H, et al Resilience in engineered resilient systems. The Journal of Defense Modeling and Simulation, 2020, 17 (4): 435- 446.
doi: 10.1177/1548512918777901 |
181 | ERDOS P, RENYI A On random graphs. Publication Mathematicae, 1959, 6, 290- 297. |
182 |
WATTS D J, STROGATZ S H Collective dynamics of ‘small-world’ networks. Nature, 1998, 393 (6684): 440- 442.
doi: 10.1038/30918 |
183 |
BARABASI A L, ALBERT R Emergence of scaling in random networks. Science, 1999, 286 (5439): 509- 512.
doi: 10.1126/science.286.5439.509 |
184 | HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 2016, 145, 47- 61. |
185 |
LENGNICK-HALL C A, BECK T E, LENGNICK-HALL M L Developing a capacity for organizational resilience through strategic human resource management. Human Resource Management Review, 2011, 21 (3): 243- 255.
doi: 10.1016/j.hrmr.2010.07.001 |
186 |
BRUNEAU M, CHANG S E, EGUCHI R T, et al A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 2003, 19 (4): 733- 752.
doi: 10.1193/1.1623497 |
187 |
MARTIN R Regional economic resilience, hysteresis and recessionary shocks. Journal of Economic Geography, 2012, 12 (1): 1- 32.
doi: 10.1093/jeg/lbr019 |
188 |
MARTIN R, SUNLEY P On the notion of regional economic resilience: conceptualization and explanation. Journal of Economic Geography, 2015, 15 (1): 1- 42.
doi: 10.1093/jeg/lbu015 |
189 | WOODS D D Four concepts for resilience and the implications for the future of resilience engineering. Reliability Engineering & System Safety, 2015, 141, 5- 9. |
190 |
GAO J X, LIU X M, LI D Q, et al Recent progress on the resilience of complex networks. Energies, 2015, 8 (10): 12187- 12210.
doi: 10.3390/en81012187 |
191 |
MENG F L, FU G T, FARMANI R, et al Topological attributes of network resilience: a study in water distribution systems. Water Research, 2018, 143, 376- 386.
doi: 10.1016/j.watres.2018.06.048 |
192 | PANDIT A, CRITTENDEN J C. Index of network resilience (INR) for urban water distribution systems. Proc. of the Critical Infrastructure Symposium, 2012. DOI: 10.13140/2.1.2826.9442. |
193 |
OMER M, NILCHIANI R, MOSTASHARI A Measuring the resilience of the trans-oceanic telecommunication cable system. IEEE Systems Journal, 2009, 3 (3): 295- 303.
doi: 10.1109/JSYST.2009.2022570 |
194 | PAN X, DANG Y H, WANG H X, et al Resilience model and recovery strategy of transportation network based on travel OD-grid analysis. Reliability Engineering & System Safety, 2022, 223, 108483. |
195 | BIRNBAUM Z W. On the importance of different components in a multicomponent system. Seattle: University of Washington, 1968. |
196 |
RUIZ-MARTIN C, WAINER G, LOPEZ-PAREDES A Exploration of network theory to evaluate organizational resilience. International Journal of Mathematical, Engineering and Management Sciences, 2022, 7 (1): 28.
doi: 10.33889/IJMEMS.2022.7.1.003 |
197 | BLAGOJEVIC N, DIDIER M, STOJADINOVIC B Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems. Reliability Engineering & System Safety, 2022, 228, 108747. |
198 |
YE S S, QIAN Z The economic network resilience of the Guanzhong plain city cluster, China: a network analysis from the evolutionary perspective. Growth and Change, 2021, 52 (4): 2391- 2411.
doi: 10.1111/grow.12530 |
199 |
GAUTHIER P, FURNO A, EL FAOUZI N E Road network resilience: how to identify critical links subject to day-to-day disruptions. Transportation Research Record, 2018, 2672 (1): 54- 65.
doi: 10.1177/0361198118792115 |
200 | XU R J, GONG L, XIE J, et al Resilience-based link importance evaluation and recovery strategy for equipment system-of-systems. Systems Engineering and Electronics, 2023, 45 (1): 139- 147. |
201 | JIANG J Y, LI J C, YANG K W Weapon system portfolio selection based on structural robustness. Journal of Systems Engineering and Electronics, 2020, 31 (6): 1216- 1229. |
202 |
AHMADIANFAR I, SHIRVANI-HOSSEINI S, HE J, et al An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Scientific Reports, 2022, 12 (1): 4934.
doi: 10.1038/s41598-022-08875-w |
203 | WANG T L, WANG L, XIA G P Combinatorial optimization method for shipping machinery based on hybrid PSO. Systems Engineering-Theory and Practice, 2012, 32 (10): 2262- 2269. |
204 |
ALIAHMADI A, GHAHREMANI-NAHR J, NOZARI H Pricing decisions in the closed-loop supply chain network, taking into account the queuing system in production centers. Expert Systems with Applications, 2023, 212, 118741.
doi: 10.1016/j.eswa.2022.118741 |
205 |
DIMAS D L F, VEGA-RODRIGUEZ MIGUEL A, PEREZ CARLOS J Automatic selection of a single solution from the Pareto front to identify key players in social networks. Knowledge-Based Systems, 2018, 160, 228- 236.
doi: 10.1016/j.knosys.2018.07.018 |
206 |
KUMAR A, SINGH S S, SINGH K, et al Link prediction techniques, applications, and performance: a survey. Physica A: Statistical Mechanics and its Applications, 2020, 553, 124289.
doi: 10.1016/j.physa.2020.124289 |
207 |
NEWMAN M E J Clustering and preferential attachment in growing networks. Physical Review E, 2001, 64 (2): 025102.
doi: 10.1103/PhysRevE.64.025102 |
208 | BARABASI A L, JEONG H, NEDA Z, et al Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 2002, 311 (3/4): 590- 614. |
209 |
ADAMIC L A, ADAR E Friends and neighbors on the web. Social Networks, 2003, 25 (3): 211- 230.
doi: 10.1016/S0378-8733(03)00009-1 |
210 |
ZHOU T, LÜ L Y, ZHANG Y C Predicting missing links via local information. The European Physical Journal B, 2009, 71, 623- 630.
doi: 10.1140/epjb/e2009-00335-8 |
211 |
KATZ L A new status index derived from sociometric analysis. Psychometrika, 1953, 18 (1): 39- 43.
doi: 10.1007/BF02289026 |
212 | TONG H, FALOUTSOS C, PAN J Y. Fast random walk with restart and its applications. Proc. of the 6th International Conference on Data Mining, 2006: 613−622. |
213 |
LIU W P, LÜ L Y Link prediction based on local random walk. Europhysics Letters, 2010, 89 (5): 58007.
doi: 10.1209/0295-5075/89/58007 |
214 |
WANG X J, ZHANG X, ZHAO C L, et al Predicting link directions using local directed path. Physica A: Statistical Mechanics and its Applications, 2015, 419, 260- 267.
doi: 10.1016/j.physa.2014.10.007 |
215 | WANG C, SATULURI V, PARTHASARATHY S. Local probabilistic models for link prediction. Proc. of the 7th IEEE International Conference on Data Mining, 2007: 322−331. |
216 | NEVILLE J. Statistical models and analysis techniques for learning in relational data. Massachusetts: University of Massachusetts Amherst, 2006. |
217 | YU K, CHU W, YU S P, et al. Stochastic relational models for discriminative link prediction. Proc. of the International Conference on Neural Information Processing Systems, 2006: 1553−1560. |
218 |
CLAUSET A, MOORE C, NEWMAN M E J Hierarchical structure and the prediction of missing links in networks. Nature, 2008, 453 (7191): 98- 101.
doi: 10.1038/nature06830 |
219 |
GUIMERA R, SALES-PARDO M Missing and spurious interactions and the reconstruction of complex networks. Proceedings of the National Academy of Sciences, 2009, 106 (52): 22073- 22078.
doi: 10.1073/pnas.0908366106 |
220 |
LAI Z H, CHEN Y D, MO D M, et al Robust jointly sparse embedding for dimensionality reduction. Neurocomputing, 2018, 314, 30- 38.
doi: 10.1016/j.neucom.2018.06.051 |
221 |
BECHT E, MCINNES L, HEALY J, et al Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology, 2019, 37 (1): 38- 44.
doi: 10.1038/nbt.4314 |
222 | PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations. Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701−710. |
223 | BELKIN M, NIYOGI P Laplacian eigenmaps and spectral techniques for embedding and clustering. Proc. of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, 2001, 701- 710. |
224 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks. Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 855−864. |
225 | KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs. Proc. of the 32nd International Conference on Neural Information Processing Systems, 2018: 4289–4300. |
226 |
TENENBAUM J B, SILVA V, LANGFORD J C A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290 (5500): 2319- 2323.
doi: 10.1126/science.290.5500.2319 |
227 |
KUCHAIEV O, RASAJSKI M, HIGHAM D J, et al Geometric de-noising of protein-protein interaction networks. PLoS Computational Biology, 2009, 5 (8): e1000454.
doi: 10.1371/journal.pcbi.1000454 |
228 |
ROWEIS S T, SAUL L K Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290 (5500): 2323- 2326.
doi: 10.1126/science.290.5500.2323 |
229 | ACAR E, DUNLAVY D M, KOLDA T G. Link prediction on evolving data using matrix and tensor factorizations. Proc. of the IEEE International Conference on Data Mining Workshops, 2009: 262−269. |
230 |
MA X K, SUN P G, QIN G M Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Pattern Recognition, 2017, 71, 361- 374.
doi: 10.1016/j.patcog.2017.06.025 |
231 | SHARAN U, NEVILLE J. Temporal-relational classifiers for prediction in evolving domains. Proc. of the 8th IEEE International Conference on Data Mining, 2008: 540−549. |
232 | MENON A K, ELKAN C. Link prediction via matrix factorization. Proc. of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2011: 437−452. |
233 |
CHEN B L, LI F F, CHEN S B, et al Link prediction based on non-negative matrix factorization. PLoS One, 2017, 12 (8): e0182968.
doi: 10.1371/journal.pone.0182968 |
234 |
WANG W J, CAI F, JIAO P F, et al A perturbation-based framework for link prediction via non-negative matrix factorization. Scientific Reports, 2016, 6 (1): 1- 11.
doi: 10.1038/s41598-016-0001-8 |
235 |
AHMED N M, CHEN L, WANG Y, et al DeepEye: link prediction in dynamic networks based on non-negative matrix factorization. Big Data Mining and Analytics, 2018, 1 (1): 19- 33.
doi: 10.26599/BDMA.2017.9020002 |
236 |
KOREN Y, BELL R, VOLINSKY C Matrix factorization techniques for recommender systems. Computer, 2009, 42 (8): 30- 37.
doi: 10.1109/MC.2009.263 |
237 | WU Z F, CHEN Y X. Link prediction using matrix factorization with bagging. Proc. of the IEEE/ACIS 15th International Conference on Computer and Information Science, 2016: 1−6. |
238 | HUANG Z, LI X, CHEN H C. Link prediction approach to collaborative filtering. Proc. of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, 2005: 141−142. |
239 |
LU L Y, MEDO M, YEUNG C H, et al Recommender systems. Physics Reports, 2012, 519 (1): 1- 49.
doi: 10.1016/j.physrep.2012.02.006 |
240 |
ESSLIMANI I, BRUN A, BOYER A Densifying a behavioral recommender system by social networks link prediction methods. Social Network Analysis and Mining, 2011, 1, 159- 172.
doi: 10.1007/s13278-010-0004-6 |
241 |
CHEN Z H, WANG X K, GAO P, et al Predicting disease related microRNA based on similarity and topology. Cells, 2019, 8 (11): 1405.
doi: 10.3390/cells8111405 |
242 | LV H, LI J, ZHANG S, et al. Meta-path based MiRNA-disease association prediction. Proc. of the International Workshop on Big Data Management and Service, 2019: 34−48. |
243 |
ZENG X X, WANG W, DENG G S, et al Prediction of potential disease-associated microRNAs by using neural networks. Molecular Therapy-Nucleic Acids, 2019, 16, 566- 575.
doi: 10.1016/j.omtn.2019.04.010 |
244 | SUN Y Z, BARBER R, GUPTA M, et al. Co-author relationship prediction in heterogeneous bibliographic networks. Proc. of the International Conference on Advances in Social Networks Analysis and Mining, 2011: 121−128. |
245 | ZHANG J Uncovering mechanisms of co-authorship evolution by multirelations-based link prediction. Information Processing & Management, 2017, 53 (1): 42- 51. |
246 | DO P, PHAM P, PHAN T, et al. T-MPP: a novel topic-driven meta-path-based approach for co-authorship prediction in large-scale content-based heterogeneous bibliographic network in distributed computing framework by spark. Proc. of the International Conference on Intelligent Computing & Optimization, 2019: 87−97. |
247 |
LI J C, GE B F, YANG K W, et al Meta-path based heterogeneous combat network link prediction. Physica A: Statistical Mechanics and its Applications, 2017, 482, 507- 523.
doi: 10.1016/j.physa.2017.04.126 |
248 |
BIER V, OLIVEROS S, SAMUELSON L Choosing what to protect: strategic defensive allocation against an unknown attacker. Journal of Public Economic Theory, 2007, 9 (4): 563- 587.
doi: 10.1111/j.1467-9779.2007.00320.x |
249 |
FENG Q L, CAI H, CHEN Z L, et al Using game theory to optimize allocation of defensive resources to protect multiple chemical facilities in a city against terrorist attacks. Journal of Loss Prevention in the Process Industries, 2016, 43, 614- 628.
doi: 10.1016/j.jlp.2016.07.010 |
250 |
LI Y P, TAN S Y, DENG Y, et al Attacker-defender game from a network science perspective. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28 (5): 051102.
doi: 10.1063/1.5029343 |
251 |
LI Y P, DENG Y, XIAO Y, et al Attack and defense strategies in complex networks based on game theory. Journal of Systems Science and Complexity, 2019, 32 (6): 1630- 1640.
doi: 10.1007/s11424-019-7420-0 |
252 |
LI Y P, XIAO Y, LI Y, et al Which targets to protect in critical infrastructures-a game-theoretic solution from a network science perspective. IEEE Access, 2018, 6, 56214- 56221.
doi: 10.1109/ACCESS.2018.2872767 |
253 |
CHEN P Y, CHENG S M, CHEN K C Smart attacks in smart grid communication networks. IEEE Communications Magazine, 2012, 50 (8): 24- 29.
doi: 10.1109/MCOM.2012.6257523 |
254 | FU C Q, GAO Y J, ZHONG J L, et al Attack-defense game for critical infrastructure considering the cascade effect. Reliability Engineering & System Safety, 2021, 216, 107958. |
255 |
BOMPARD E, GAO C, NAPOLI R, et al Risk assessment of malicious attacks against power systems. IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2009, 39 (5): 1074- 1085.
doi: 10.1109/TSMCA.2009.2020687 |
256 |
BROWN G G, COX, JR L A How probabilistic risk assessment can mislead terrorism risk analysts. Risk Analysis: An International Journal, 2011, 31 (2): 196- 204.
doi: 10.1111/j.1539-6924.2010.01492.x |
257 | YIN Z, JIANG A, JOHNSON M, et al. Trusts: scheduling randomized patrols for fare inspection in transit systems. Proc. of the AAAI Conference on Artificial Intelligence. 2012, 26(2): 2348−2355. |
258 |
BROWN G, CARLYLE M, SALMERON J, et al Defending critical infrastructure. Interfaces, 2006, 36 (6): 530- 544.
doi: 10.1287/inte.1060.0252 |
259 |
LI Y P, QIAO S, DENG Y, et al Stackelberg game in critical infrastructures from a network science perspective. Physica A: Statistical Mechanics and its Applications, 2019, 521, 705- 714.
doi: 10.1016/j.physa.2019.01.119 |
260 | FU C Q, ZHANG P T, ZHOU L, et al Camouflage strategy of a Stackelberg game based on evolution rules. Chaos, Solitons & Fractals, 2021, 153, 111603. |
261 |
ZHAI Q Q, PENG R, ZHUANG J Defender-attacker games with asymmetric player utilities. Risk Analysis, 2020, 40 (2): 408- 420.
doi: 10.1111/risa.13399 |
262 | FENG Q L, CAI H, CHEN Z L Using game theory to optimize the allocation of defensive resources on a city scale to protect chemical facilities against multiple types of attackers. Reliability Engineering & System Safety, 2019, 191, 105900. |
263 |
POWELL R Defending against terrorist attacks with limited resources. American Political Science Review, 2007, 101 (3): 527- 541.
doi: 10.1017/S0003055407070244 |
264 |
ZHANG L B, RENIERS G A game-theoretical model to improve process plant protection from terrorist attacks. Risk Analysis, 2016, 36 (12): 2285- 2297.
doi: 10.1111/risa.12569 |
265 |
LI Q, LI M C, GAN J Y, et al A game-theoretic approach for the location of terror response facilities with both disruption risk and hidden information. International Transactions in Operational Research, 2021, 28 (4): 1864- 1889.
doi: 10.1111/itor.12900 |
266 |
REN B A, LI M J, LIU H F, et al Stackelberg game under asymmetric information in critical infrastructure system: from a complex network perspective. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29 (8): 083129.
doi: 10.1063/1.5100849 |
267 | ZHANG X X, DING S, GE B F, et al Resource allocation among multiple targets for a defender-attacker game with false targets consideration. Reliability Engineering & System Safety, 2021, 211, 107617. |
268 | LIU B H, SUN J T. Applying Stackelberg active deception game for network defense: from the perspective of imperfect network node information. Proc. of the 1st International Conference on Control and Intelligent Robotics, 2021: 28−32. |
269 | TAMBE M. Security and game theory: algorithms, deployed systems, lessons learned. Cambridge: Cambridge University Press, 2011. |
270 | GU X Q, ZENG C Y, XIANG F T. Applying a Bayesian Stackelberg game to secure infrastructure system: from a complex network perspective. Proc. of the 4th International Conference on Automation, Control and Robotics Engineering, 2019: 1−6. |
271 |
ZENG C Y, REN B A, LIU H F, et al Applying the Bayesian Stackelberg active deception game for securing infrastructure networks. Entropy, 2019, 21 (9): 909.
doi: 10.3390/e21090909 |
272 |
JIANG J, LIU X Bayesian Stackelberg game model for water supply networks against interdictions with mixed strategies. International Journal of Production Research, 2021, 59 (8): 2537- 2557.
doi: 10.1080/00207543.2020.1735661 |
273 |
BAYKAL-GUERSOY M, DUAN Z, POOR H V, et al Infrastructure security games. European Journal of Operational Research, 2014, 239 (2): 469- 478.
doi: 10.1016/j.ejor.2014.04.033 |
274 |
GUAN P Q, HE M L, ZHUANG J, et al Modeling a multitarget attacker-defender game with budget constraints. Decision Analysis, 2017, 14 (2): 87- 107.
doi: 10.1287/deca.2017.0346 |
[1] | Jianbin SUN, Jichao LI, Yaqian YOU, Jiang JIANG, Bingfeng Ge. Combat network link prediction based on embedding learning [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 345-353. |
[2] | Zhenya WU, Jianping HAO. Clustering-based maintainability demonstration for complex systems with a mixed maintenance time distribution [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1260-1271. |
[3] | Yinghui YANG, Jianhua LI, Di SHEN, Mingli NAN, Qiong CUI. Evolutionary dynamics analysis of complex network with fusion nodes and overlap edges [J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 549-559. |
[4] | Chao GENG, Shiyou QU, Yingying XIAO, Mei WANG, Guoqiang SHI, Tingyu LIN, Junjie XUE, Zhengxuan JIA. Diffusion mechanism simulation of cloud manufacturing complex network based on cooperative game theory [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 321-335. |
[5] | Bin CHEN, Weixing ZHU, Ying LIU. Algorithm for complex network diameter based on distance matrix [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 336-342. |
[6] | Bin Chen, Zhixue Wang, and Chen Luo. Integrated evaluation approach for node importance of complex networks based on relative entropy [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1219-1226. |
[7] | Yushi Lan, Kebo Deng, Shaojie Mao, Heng Wang, Kan Yi, and Ming Lei. Adaptive evolvement of information age C4ISR structure [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 301-316. |
[8] | Hongming Mo, Cai Gao, and Yong Deng. Evidential method to identify influential nodes in complex networks [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 381-387. |
[9] | Qi Gao, Xiaoting Li, and Feng Pan. Research on variance of subnets in network sampling [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1098-1106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||