Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (1): 247-258.doi: 10.23919/JSEE.2023.000006
• RELIABILITY • Previous Articles
Fengfei WANG(), Shengjin TANG(), Xiaoyan SUN(), Liang LI(), Chuanqiang YU(), Xiaosheng SI
Received:
2021-03-10
Online:
2023-02-18
Published:
2023-03-03
Contact:
Shengjin TANG
E-mail:18755187114@163.com;tangshengjin27@126.com;sunxiaoyantsj@126.com;xzj_921@163.com;fishychq@163.com
About author:
Supported by:
Fengfei WANG, Shengjin TANG, Xiaoyan SUN, Liang LI, Chuanqiang YU, Xiaosheng SI. Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data[J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 247-258.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
23 |
YE Z S, CHEN N, SHEN Y A new class of Wiener process models for degradation analysis. Reliability Engineering & System Safety, 2015, 139, 58- 67.
doi: 10.1016/j.ress.2015.02.005 |
24 |
YE Z S, WANG Y, TSUI K L, et al Degradation data analysis using wiener processes with measurement errors. IEEE Trans. on Reliability, 2013, 62 (4): 772- 780.
doi: 10.1109/TR.2013.2284733 |
25 |
SI X S, WANG W, HU C H, et al Estimating remaining useful life with three-source variability in degradation modeling. IEEE Trans. on Reliability, 2014, 63 (1): 167- 190.
doi: 10.1109/TR.2014.2299151 |
26 |
WANG Z Q, HU C H, FAN H D Real-time remaining useful life prediction for a nonlinear degrading system in service: application to bearing data. IEEE/ASME Trans. on Mechatronics, 2018, 23 (1): 211- 222.
doi: 10.1109/TMECH.2017.2666199 |
27 |
TANG S J, GUO X S, YU C Q, et al Real time remaining useful life prediction based on nonlinear Wiener based degradation processes with measurement errors. Journal of Central South University, 2014, 21 (12): 4509- 4517.
doi: 10.1007/s11771-014-2455-9 |
28 |
GEBRAEEL N, ELWANY A, PAN J Residual life predictions in the absence of prior degradation knowledge. IEEE Trans. on Reliability, 2009, 58 (1): 106- 117.
doi: 10.1109/TR.2008.2011659 |
29 |
WANG W B, CARR M, XU W J, et al A model for residual life prediction based on Brownian motion with an adaptive drift. Microelectronics Reliability, 2011, 51 (2): 285- 293.
doi: 10.1016/j.microrel.2010.09.013 |
30 |
SI X S An adaptive prognostic approach via nonlinear degradation modeling: application to battery data. IEEE Trans. on Industrial Electronics, 2015, 62 (8): 5082- 5096.
doi: 10.1109/TIE.2015.2393840 |
31 |
WANG X, HU C H, SI X S, et al An adaptive prognostic approach for newly developed system with three-source variability. IEEE Access, 2019, 7, 53091- 53102.
doi: 10.1109/ACCESS.2019.2911307 |
32 |
FENG L, WANG H L, SI X S, et al A state-space-based prognostic model for hidden and age-dependent nonlinear degradation process. IEEE Trans. on Automation Science and Engineering, 2013, 10 (4): 1072- 1086.
doi: 10.1109/TASE.2012.2227960 |
33 |
HUANG Z Y, XU Z G, WANG W H, et al Remaining useful life prediction for a nonlinear heterogeneous wiener process model with an adaptive drift. IEEE Trans. on Reliability, 2015, 64 (2): 687- 700.
doi: 10.1109/TR.2015.2403433 |
34 |
WANG Z Q, WANG W B, HU C H, et al A real-time prognostic method for the drift errors in the inertial navigation system by a nonlinear random-coefficient regression model. Acta Astronautica, 2014, 103, 45- 54.
doi: 10.1016/j.actaastro.2014.06.034 |
35 |
LEHMANN A Joint modeling of degradation and failure time data. Journal of Statistical Planning and Inference, 2009, 139 (5): 1693- 1706.
doi: 10.1016/j.jspi.2008.05.027 |
1 |
WANG Z Z, CHEN Y X, CAI Z Y, et al Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold. Journal of Systems Engineering and Electronics, 2020, 31 (2): 415- 431.
doi: 10.23919/JSEE.2020.000018 |
2 |
TANG S J, XU X D, YU C Q, et al Remaining useful life prediction with fusing failure time data and field degradation data with random effects. IEEE Access, 2020, 8, 11964- 11978.
doi: 10.1109/ACCESS.2019.2948263 |
3 |
ZHANG H W, CHEN M Y, ZHOU D H Remaining useful life prediction for a nonlinear multi-degradation system with public noise. Journal of Systems Engineering and Electronics, 2018, 29 (2): 429- 435.
doi: 10.21629/JSEE.2018.02.22 |
4 |
ZHANG J L, LEE J A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 2011, 196 (15): 6007- 6014.
doi: 10.1016/j.jpowsour.2011.03.101 |
5 |
ARVIND S S V, BING L, MICHAEL P Diagnostics and prognostics method for analog electronic circuits. IEEE Trans. on Industrial Electronics, 2013, 60 (11): 5277- 5291.
doi: 10.1109/TIE.2012.2224074 |
6 |
CAI Z, CHEN Y X, ZHANG Q, et al Residual lifetime prediction model of nonlinear accelerated degradation data with measurement error. Journal of Systems Engineering and Electronics, 2017, 28 (5): 1028- 1038.
doi: 10.21629/JSEE.2017.05.21 |
7 |
FAN Z L, LIU G B, SI X S Degradation data-drive approach for remaining useful life estimation. Journal of Systems Engineering and Electronics, 2013, 24 (1): 173- 182.
doi: 10.1109/JSEE.2013.00022 |
8 |
ZHANG J X, HU C H, HE X, et al A novel lifetime estimation method for two-phase degrading systems. IEEE Trans. on Reliability, 2019, 68 (2): 689- 709.
doi: 10.1109/TR.2018.2829844 |
9 |
SI X S, WANG W B, HU C H, et al Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Trans. on Reliability, 2012, 61 (1): 50- 67.
doi: 10.1109/TR.2011.2182221 |
10 |
TANG S J, YU C Q, WANG X, et al Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error. Energies, 2014, 7 (2): 520- 547.
doi: 10.3390/en7020520 |
11 | CAI Z Y, CHEN Y X, GUO J S Remaining lifetime prediction for nonlinear degradation device with random effect. Journal of Systems Engineering and Electronics, 2018, 29 (5): 1101- 1110. |
12 |
LEI Y G, LI N P, GUO L, et al Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016 |
36 |
ZHANG Y, JIA X, GUO B Bayesian framework for satellite rechargeable lithium battery synthesizing bivariate degradation and lifetime data. Journal of Central South University, 2018, 25 (2): 418- 431.
doi: 10.1007/s11771-018-3747-2 |
37 | ZHAO Q, JIA X, GUO B, et al Real-time Bayes estimation of residual life based on multisource information fusion. Proc. of the Prognostics and System Health Management Conference, 2018, 215- 222. |
38 | SUN M, JING B, JIAO X X, et al Research on life prediction of airborne fuel pump based on combination of degradation data and life data. Proc. of the Prognostics and System Health Management Conference, 2018, 664- 668. |
39 |
PENG C Y, TSENG S T Mis-specification analysis of linear degradation models. IEEE Trans. on Reliability, 2009, 58 (3): 444- 455.
doi: 10.1109/TR.2009.2026784 |
40 |
ZHANG Z X, SI X S, HU C H, et al Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods. European Journal of Operational Research, 2018, 271 (3): 775- 796.
doi: 10.1016/j.ejor.2018.02.033 |
41 | WAN C H, LIU Z G, TANG S J, et al Remaining useful life prediction based on the nonlinear random coefficient regression model under imperfect prior information. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (2): 2542- 2551. |
42 | LU C J, MEEKER W Q. Using degradation measures to estimate a time-to-failure distribution. Technometrics, 1993, 35(2): 161−174. |
43 |
SI X S, WANG W, CHEN M Y, et al A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution. European Journal of Operational Research, 2013, 226 (1): 53- 66.
doi: 10.1016/j.ejor.2012.10.030 |
44 |
JIN G, MATTHEWS D E, ZHOU Z B A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft. Reliability Engineering & System Safety, 2013, 113, 7- 20.
doi: 10.1016/j.ress.2012.12.011 |
13 |
SI X S, WANG W, HU C H, et al A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mechanical Systems and Signal Processing, 2013, 35 (1/2): 219- 237.
doi: 10.1016/j.ymssp.2012.08.016 |
14 |
SI X S, WANG W, HU C H, et al Remaining useful life estimation—a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213 (1): 1- 14.
doi: 10.1016/j.ejor.2010.11.018 |
15 |
ZHANG Z X, SI X S, HU C H An age- and state-dependent nonlinear prognostic model for degrading systems. IEEE Trans. on Reliability, 2015, 64 (4): 1214- 1228.
doi: 10.1109/TR.2015.2419220 |
16 |
TANG S J, GUO X S, ZHOU Z J Mis-specification analysis of linear Wiener process-based degradation models for the remaining useful life estimation. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2014, 228 (5): 478- 487.
doi: 10.1177/1748006X14533784 |
17 |
CAI Z Y, ZHOU W Z, XIANG C Y Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling. Journal of Systems Engineering and Electronics, 2020, 31 (1): 194- 205.
doi: 10.21629/JSEE.2020.01.19 |
18 |
GEBRAEEL N Z, LAWLEY M A, LI R, et al Residual-life distributions from component degradation signals: a Bayesian approach. IIE Transactions, 2005, 37 (6): 543- 557.
doi: 10.1080/07408170590929018 |
19 |
GEBRAEEL N Sensory-updated residual life distributions for components with exponential degradation patterns. IEEE Trans. on Automation Science and Engineering, 2006, 3 (4): 382- 393.
doi: 10.1109/TASE.2006.876609 |
20 |
GEBRAEEL N, PAN J Prognostic degradation models for computing and updating residual life distributions in a time-varying environment. IEEE Trans. on Reliability, 2008, 57 (4): 539- 550.
doi: 10.1109/TR.2008.928245 |
21 |
BAE S J, KVAM P H A nonlinear random-coefficients model for degradation testing. Technometrics, 2004, 46 (4): 460- 469.
doi: 10.1198/004017004000000464 |
22 | HUI P D, BAO L J, ZHI Y W A new result on lifetime estimation based on skew-Wiener degradation model. Statistics and Probability Letters, 2018, 138, 157- 164. |
[1] | Jianping ZHOU, Wei LI, Qunli XIA, Huan JIANG. Robust missile autopilot design based on dynamic surface control [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 160-171. |
[2] | Lifu LI, Ting CHENG. Debiased conversion measurements based target tracking with direction cosine measurements [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1140-1150. |
[3] | Yuqiang FU, Xiaoyang MA. Component reallocation and system replacement maintenance based on availability and cost in series systems [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1342-1353. |
[4] | ZHANG Ao, Zhihua WANG, Qiong WU, Chengrui LIU. Generalized degradation reliability model considering phase transition [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 748-758. |
[5] | Pingping XIONG, Shiting CHEN, Shuli YAN. Time-delay nonlinear model based on interval grey number and its application [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 370-380. |
[6] | Xinjian MA, Shiqian LIU, Huihui CHENG. Civil aircraft fault tolerant attitude tracking based on extended state observers and nonlinear dynamic inversion [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 180-187. |
[7] | Hui WAN, Xiaohui QI, Jie LI. Stability analysis of linear/nonlinear switching active disturbance rejection control based MIMO continuous systems [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 956-970. |
[8] | Abdollah AZIZI, Mehdi FOROUZANFAR. Stabilizing controller design for nonlinear fractional order systems with time varying delays [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 681-689. |
[9] | Zongxing LI, Rui ZHANG. Time-varying sliding mode control of missile based on suboptimal method [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 700-710. |
[10] | Hongwei WANG, Penglong FENG. Fuzzy modeling of multirate sampled nonlinear systems based on multi-model method [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 761-769. |
[11] | Yang ZHAO, Lili DONG. Adaptive back-stepping control on container ships for path following [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 780-791. |
[12] | Lixiong LIN, Qing WANG, Bingwei HE, Xiafu PENG. Evaluation of fault diagnosability for nonlinear uncertain systems with multiple faults occurring simultaneously [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 634-646. |
[13] | Zezhou WANG, Yunxiang CHEN, Zhongyi CAI, Yangjun GAO, Lili WANG. Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 415-431. |
[14] | Hongwei WANG, Yuxiao CHEN. Parameter estimation for dual-rate sampled Hammerstein systems with dead-zone nonlinearity [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 185-193. |
[15] | Zhongyi CAI, Zezhou WANG, Yunxiang CHEN, Jiansheng GUO, Huachun XIANG. Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 194-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||