Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (5): 1095-1107.doi: 10.23919/JSEE.2022.000107
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Zongling LI1,2(), Qingjun ZHANG3(), Teng LONG1(), Baojun ZHAO1,*()
Received:
2022-03-03
Accepted:
2022-08-09
Online:
2022-10-27
Published:
2022-10-27
Contact:
Baojun ZHAO
E-mail:leezl0519@163.com;ztzhangqj@163.com;longteng@bit.edu.cn;zbj@bit.edu.cn
About author:
Zongling LI, Qingjun ZHANG, Teng LONG, Baojun ZHAO. A parallel pipeline connected-component labeling method for on-orbit space target monitoring[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1095-1107.
Table 1
Processing results of TZ-3 space target monitoring equipment"
Data set (4096×4096) | CCD integral time/ms | Nums of runs | Nums of equivalences | Label time/ms | ||||||||
Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | ||||
Set 1 (2388 images) | 150 | 18504 | 12567 | 14752 | 19 | 0 | 7 | 129.12 | 112.05 | 115.76 | ||
Set 2 (1934 images) | 200 | 19531 | 13214 | 16321 | 35 | 0 | 12 | 141.21 | 112.05 | 127.85 | ||
Set 3 (1742 images) | 250 | 25430 | 17654 | 22043 | 41 | 0 | 14 | 152.43 | 112.05 | 131.32 | ||
Set 4 (1543 images) | 300 | 32567 | 21734 | 27621 | 55 | 1 | 23 | 167.95 | 119.05 | 142.92 | ||
Set 5 (1149 images) | 500 | 45768 | 32165 | 35982 | 148 | 9 | 61 | 241.13 | 124.05 | 198.32 |
Table 3
Performance of different algorithms"
Algorithm | FPGA | Image size | Num | SLICE | RAM/kB | External memory | Time/ms |
Algorithm in [ | XC7Z020 | 640×480 | 64 | 481 | 0.375 | DDR3 | 1.75 |
XC7Z020 | 640×480 | 128 | 699 | 0.875 | DDR3 | 1.74 | |
XC7Z020 | 640×480 | 256 | 1072 | 2 | DDR3 | 1.94 | |
XC7Z020 | 640×480 | 512 | 1699 | 4.5 | DDR3 | 2.16 | |
XC7Z020 | 640×480 | 1024 | 3226 | 10 | DDR3 | 2.44 | |
XC7Z020 | 2048×2048 | 64 | 784 | 0.375 | DDR3 | 21.55 | |
XC7Z020 | 2048×2048 | 256 | 1439 | 2 | DDR3 | 27.18 | |
XC7Z020 | 2048×2048 | 1024 | 3688 | 10 | DDR3 | 33.01 | |
XC7VX1140T | 2048×1536 | 8192 | 28886 | 104 | DDR3 | 21.51 | |
Algorithm in [ | ZCU104 | 3840×2160 | <1024 | 55040 | 70 | DDR4 | 16.67 |
Algorithm in [ | VIRTEXII | 1024×1024 | 4096 | 432 | 130 | No need | 305 |
Algorithm in [ | XC7K325T | 256×256 | — | 5943 | 108 | No need | — |
XC7K325T | 640×480 | — | 8243 | 156 | No need | — | |
XC7K325T | 7680×4320 | — | 24510 | 548 | No need | — | |
Algorithm in [ | XC4VLX160 | 640×480 | <1024 | 2510 | 76 | Synchronous dynamic random access memory | 28.5 |
Proposed algorithm | XC7VX690T | 4096×4096 | 65536 | 25877 | 361 | No need | 170.07 |
1 |
GUL T, GUZIN U, BESTE U, et al Ciratefi based copy move forgery detection on digital images. Multimedia Tools and Applications, 2022, 81, 22867- 22902.
doi: 10.1007/s11042-021-11503-w |
2 | ONSHAUNJIT J, SRINONCHAT J Algorithmic scheme for concurrent detection and classification of printed circuit board defects. CMC-Computers, Materials & Continua, 2022, 71 (1): 355- 367. |
3 |
BARIS G, GURAY S Recognition of dynamic objects from UGVs using interconnected neural network-based computer vision system. Automatika, 2022, 63 (2): 244- 258.
doi: 10.1080/00051144.2022.2031539 |
4 | KH A, GDW B, KPY A Informed component label algorithm for robust identification of connected components with volume-of-fluid method. Computers & Fluids, 2020, 197 (1): 104373. |
5 |
YANG G, ZHENG W P, CHE C H Graph-based label propagation algorithm for community detection. International Journal of Machine Learning and Cybernetics, 2020, 11 (6): 1319- 1329.
doi: 10.1007/s13042-019-01042-0 |
6 | YAN J, ZHOU L M, RAGHAVENDRA A Observed changes in fire patterns and possible drivers over Central Africa. Environmental Research Letters, 2020, 15 (9): 0940b8. |
7 |
ZHENG X, LEI Q Y, YAO R, et al Image segmentation based on adaptive k-means algorithm . Journal on Image and Video Processing, 2018, 2018, 68.
doi: 10.1186/s13640-018-0309-3 |
8 |
TOSUN A B, GUNDUZ-DEMIR C Graph run-length matrices for histopathological image segmentation. IEEE Trans. on Medical Imaging, 2011, 30 (3): 721- 732.
doi: 10.1109/TMI.2010.2094200 |
9 |
GARCIA-UGARRIZA L, SABER E, AMUSO V, et al Automatic color image segmentation by dynamic region growth and multimodal merging of color and texture information. IEEE Trans. on Image Processing, 2009, 18 (10): 2275- 2288.
doi: 10.1109/TIP.2009.2025555 |
10 | ZHU H C, HUANG W, LIU H Y Loess terrain segmentation from digital elevation models based on the region growth method. Physical Geography, 2017, 39 (1): 51- 66. |
11 | UEMURA T, KOUTAKI K, UCHIMURA K Image segmentation based on edge detection using boundary code. International Journal of Innovative Computing, Information & Control, 2011, 7 (10): 6073- 6083. |
12 |
LONG J W, FENG X, ZHU X F, et al Efficient superpixel-guided interactive image segmentation based on graph theory. Symmetry, 2018, 10 (5): 169- 175.
doi: 10.3390/sym10050169 |
13 |
VAN O A, IKRAM MA, VERNOOIJ M W, et al Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans. on Medical Imaging, 2015, 34 (5): 1018- 1030.
doi: 10.1109/TMI.2014.2366792 |
14 |
CHEN L, BENTLEY P, MORI K, et al DRINET for medical image segmentation. IEEE Trans. on Medical Imaging, 2018, 37 (11): 2453- 2462.
doi: 10.1109/TMI.2018.2835303 |
15 |
HE L F, CHAO Y Y, SUZUKI K Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. IEEE Trans. on Image Processing, 2011, 20 (8): 2122- 2134.
doi: 10.1109/TIP.2011.2114352 |
16 | LI Z L, ZHANG Q J, LONG T, et al Ship target detection and recognition method on sea surface based on multi-level hybrid network. Journal of Beijing Institute of Technology, 2021, 30 (S1): 1- 10. |
17 | JASIEWICZ J, STEPINSKI T F Geomorphons a pattern recognition approach to classification and mapping of landforms. Geomorphology, 2013, 182 (1): 147- 156. |
18 | WU K S, OTOO E, SUZUKI K Optimizing two-pass connected-component labeling algorithms. Pattern Analysis & Applications, 2009, 12 (2): 117- 135. |
19 | DIAZ-DEL-RIO F, SANCHEZ-CUEVAS P, MOLINA-ABRIL H, et al Parallel connected-component-labeling based on homotopy trees. Pattern Recognition Letters, 2020, 131 (4): 71- 78. |
20 | BATAINEH B A fast and memory-efficient two-pass connected-component labeling algorithm for binary images. Turkish Journal of Electrical Engineering and Computer Sciences, 2019, 27 (2): 1243- 1259. |
21 | ZHAO X, HE L F, YAO B, et al A new connected-component labeling algorithm. IEEE Trans. on Information & Systems, 2015, 98 (11): 2013- 2016. |
22 | HE L F, REN X W, GAO Q H, et al The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recognition, 2017, 70 (1): 25- 43. |
23 | DOUBE M Multithreaded two-pass connected components labelling and particle analysis in Image. Royal Society Open Science, 2021, 8 (1): 201784. |
24 |
HE L F, CHAO Y Y, SUZUKI K A run-based two-scan labeling algorithm. IEEE Trans. on Image Processing, 2008, 17 (5): 749- 756.
doi: 10.1109/TIP.2008.919369 |
25 |
JEONG J W, LEE G B, LEE M J, et al A single-pass connected component labeler without label merging period. Journal of Signal Processing Systems for Signal, Image, and Video Technology, 2016, 84 (2): 211- 223.
doi: 10.1007/s11265-015-1048-7 |
26 |
YANG Y, ZHANG D P A novel line scan clustering algorithm for identifying connected components in digital images. Image and Vision Computing, 2003, 21 (5): 459- 472.
doi: 10.1016/S0262-8856(03)00015-5 |
27 |
CHANG F, CHEN C J, LU C J A linear-time component-labeling algorithm using contour tracing technique. Computer Vision and Image Understanding, 2004, 93 (2): 206- 220.
doi: 10.1016/j.cviu.2003.09.002 |
28 | HU Q M, QIAN G Y, NOWINSKI W L Fast connected-component labeling in three-dimensional binary images based on iterative recursion. Computer Vision & Image Understanding, 2005, 99 (3): 414- 434. |
29 |
KLAIBER M J, BAILEY D G, SIMON S Comparative study and proof of single-pass connected components algorithms. Journal of Mathematical Imaging and Vision, 2019, 61 (8): 1112- 1134.
doi: 10.1007/s10851-019-00891-2 |
30 |
ASAD P, MARROQUIM R, SOUZA A L E L On GPU connected components and properties: a systematic evaluation of connected component labeling algorithms and their extension for property extraction. IEEE Trans. on Image Processing, 2019, 28 (1): 17- 31.
doi: 10.1109/TIP.2018.2851445 |
31 |
ALLEGRETTI S, BOLELLI F, GRANA C Optimized block-based algorithms to label connected components on GPUs. IEEE Trans. on Parallel and Distributed Systems, 2020, 31 (2): 423- 438.
doi: 10.1109/TPDS.2019.2934683 |
32 | LIN D T, LIN M C, HUANG K Y Real-time automatic recognition of omnidirectional multiple bar-codes and DSP implementation. Machine Vision and Applications, 2010, 22 (2): 409- 419. |
33 |
TSAI T H, CHEN S W Single-chip design for intelligent surveillance system. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2018, 26 (9): 1637- 1646.
doi: 10.1109/TVLSI.2018.2827385 |
34 |
AZIZABADI M, BEHRAD A, GHAZNAVI-GHOUSHCHI M B VLSI implementation of star detection and centroid calculation algorithms for star tracking applications. Journal of Real-Time Image Processing, 2014, 9 (1): 127- 140.
doi: 10.1007/s11554-012-0285-2 |
35 |
PERRI S, SPAGNOLO F, CORSONELLO P A parallel connected component labeling architecture for heterogeneous systems-on-chip. Electronics, 2020, 9 (2): 292.
doi: 10.3390/electronics9020292 |
36 |
KOWALCZYK M, CIARACH P, PRZEWLOCKA-RUS D, et al Real-time FPGA implementation of parallel connected component labeling for a 4k video stream. Journal of Signal Processing Systems, 2021, 93 (5): 481- 498.
doi: 10.1007/s11265-021-01636-4 |
37 | ITO Y, NAKANO K Low-latency connected component labeling using an FPGA. Journal of Foundations of Computer Science, 2010, 21 (3): 405- 425. |
38 |
KLAIBER M J, BAILEY D G, SIMON S A single-cycle parallel multi-slice connected components analysis hardware architecture. Journal of Real-Time Image Processing, 2019, 16 (4): 1165- 1175.
doi: 10.1007/s11554-016-0610-2 |
39 | TANG J W, SHAIKH-HUSIN N, SHEIKH U U, et al A linked list run-length-based single-pass connected component analysis for real-time embedded hardware. Journal of Real-time Image Processing, 2018, 15 (1): 197- 215. |
40 | XIE Y Z, TAN X B, CHEN H A new algorithm for connected components labeling. Transactions of Beijing Institute of Technology, 2012, 32 (12): 1273- 1278. |
41 | GONZLEZ C G, RAFAELEW W Digital image processing. 3rd ed. London: Pearson Education, 2011. |
42 |
KLAIBER M J, BAILEY D G, BAROUD Y O, et al A resource-efficient hardware architecture for connected component analysis. IEEE Trans. on Circuits and Systems for Video Technology, 2016, 26 (7): 1334- 1349.
doi: 10.1109/TCSVT.2015.2450371 |
43 |
APPIAH K, HUNTER A, DICKINSON P, et al Accelerated hardware video object segmentation: from foreground detection to connected components labelling. Computer Vision and Image Understanding, 2010, 114 (11): 1282- 1291.
doi: 10.1016/j.cviu.2010.03.021 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||