1 |
FISHLER E, HAIMOVICH A, BLUM R, et al MIMO radar: an idea whose time has come. Proc. of the IEEE Radar Conference, 2004, 71- 78.
|
2 |
ZHANG H W, XIE J W, GE J A, et al Finite sensor selection algorithm in distributed MIMO radar for joint target tracking and detection. Journal of Systems Engineering and Electronics, 2020, 31 (2): 290- 302.
|
3 |
DONTAMSETTI S G, KUMAR R V R A distributed MIMO radar with joint optimal transmit and receive signal combining. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (1): 623- 635.
doi: 10.1109/TAES.2020.3027103
|
4 |
SKOLNIK M. Introduction to radar systems. 3rd ed. New York: McGrawHill, 2001.
|
5 |
DU S Y, HONG J, WANG Y, et al The influence of the azimuth RCS pattern of calibrator on SAR absolute calibration. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4020305.
|
6 |
HE Q, WANG Z, HU J B, et al Performance gains from cooperative MIMO radar and MIMO communication systems. IEEE Signal Processing Letters, 2019, 26 (1): 194- 198.
doi: 10.1109/LSP.2018.2880836
|
7 |
WU L L, MISHRA K V, SHANKAR M R B, et al Resource allocation in heterogeneously-distributed joint radar-communications under asynchronous Bayesian tracking framework. IEEE Journal on Selected Areas in Communications, 2022, 40 (7): 2026- 2042.
doi: 10.1109/JSAC.2022.3157371
|
8 |
FISHLER E, HAIMOVICH A, BLUM R, et al Performance of MIMO radar systems: advantages of angular diversity. Proc. of the 38th Asilomar Conference on Signals, Systems and Computers, 2004, 1, 305- 309.
|
9 |
FISHLER E, HAIMOVICH A, BLUM R, et al Spatial diversity in radars models and detection performance. IEEE Trans. on Signal Processing, 2006, 54 (3): 823- 838.
doi: 10.1109/TSP.2005.862813
|
10 |
BEKKERMAN I, TABRIKIAN J Target detection and localization using MIMO radars and sonars. IEEE Trans. on Signal Processing, 2006, 54 (10): 3873- 3883.
|
11 |
HE Q, LAHMANN N H, BLUM R, et al MIMO radar moving target detection in homogeneous clutter. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (3): 1290- 1301.
doi: 10.1109/TAES.2010.5545189
|
12 |
WANG P, LI H B, HIMED B Moving target detection using distributed MIMO radar in clutter with nonhomogeneous power. IEEE Trans. on Signal Processing, 2011, 59 (10): 823- 838.
|
13 |
ZHANG Q L, DONG Z, LI D X Optimal detection and ambiguity function of hybrid distributed MIMO radar. IEEE Access, 2019, 7, 160786- 160799.
doi: 10.1109/ACCESS.2019.2951724
|
14 |
DOU G, ZHOU S, LIU H, et al Signal classification against repeat radar jammers with optimized MIMO radar waveforms. Proc. of the IET International Radar Conference, 2020, 768- 772.
|
15 |
CHEN S, ZHAO Y B, PANG X J, et al Low-angle estimation using frequency-agile refined maximum likelihood algorithm based on optimal fusion. Journal of Systems Engineering and Electronics, 2021, 32 (3): 538- 544.
|
16 |
ZHOU R X, XIA G F, ZHAO Y, et al Coherent signal processing method for frequency-agile radar. Proc. of the IEEE 12th International Conference on Electronic Measurement & Instruments, 2015, 431- 434.
|
17 |
LIU Y, MENG H, LI G, et al Range-velocity estimation of multiple targets in randomised stepped-frequency radar. Electronics Letters, 2008, 44 (17): 1032- 1034.
doi: 10.1049/el:20081608
|
18 |
HUANG T Y, LIU Y M, MENG H D, et al Cognitive random stepped frequency radar with sparse recovery. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (2): 858- 870.
doi: 10.1109/TAES.2013.120443
|
19 |
HUANG T Y, LIU Y M, XU X Y, et al Analysis of frequency agile radar via compressed sensing. IEEE Trans. on Signal Processing, 2018, 66 (23): 6228- 6240.
doi: 10.1109/TSP.2018.2876301
|
20 |
WANG L, HUANG T Y, LIU Y M Randomized stepped frequency radars exploiting block sparsity of extended targets: a theoretical analysis. IEEE Trans. on Signal Processing, 2021, 69, 1378- 1393.
doi: 10.1109/TSP.2021.3058444
|
21 |
GE M M, YU X X, YAN Z X, et al Joint cognitive optimization of transmit waveform and receive filter against deceptive interference. Signal Processing, 2021, 185, 108084.
doi: 10.1016/j.sigpro.2021.108084
|
22 |
LI K, JIU B, WANG P H, et al Radar active antagonism through deep reinforcement learning: a way to address the challenge of mainlobe jamming. Signal Processing, 2021, 186, 108130.
doi: 10.1016/j.sigpro.2021.108130
|
23 |
LI K, BO J, LIU H W. Deep Q-network based anti-jamming strategy design for frequency agile radar. Proc. of the International Radar Conference, 2019. DOI: 10.1109/RADAR41533.2019.171227.
|
24 |
CHEN T, YANG P, PENG H, et al Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming. Journal of Systems Engineering and Electronics, 2020, 31 (5): 859- 870.
|
25 |
TROPP J A, GILBERT A C Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108
|
26 |
JIANG H Q, XU H Y, XU C Y Channelized-based denoising generalized orthogonal matching pursuit for reconstructing structural sparse signal under noise background. IEEE Access, 2018, 6, 66105- 66122.
|
27 |
ABTAHI M, KAMJOO M, MARVASTI F, et al. ML-based block sparse recovery for distributed MIMO radars in clutter environments. Proc. of the IEEE Global Conference on Signal and Information Processing, 2019. DOI: 10.1109/GlobalSIP45357.2019.8969278.
|
28 |
HU X W, TONG N N, ZHANG Y S MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery. IEEE Trans on Geoscience and Remote Sensing, 2018, 56 (10): 5985- 5996.
|
29 |
ROBEY F C, FUHRMANN D R KELLY E J, et al A CFAR adaptive matched filter detector. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28 (1): 208- 216.
doi: 10.1109/7.135446
|
30 |
HAIMOVICH A M, BLUM R S, CIMINI L J MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, 25 (1): 116- 129.
doi: 10.1109/MSP.2008.4408448
|