Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (5): 1043-1051.doi: 10.23919/JSEE.2022.000102
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Lingchi GE(), Min FANG*(), Haikun LI(), Bo CHEN()
Received:
2021-05-10
Online:
2022-10-27
Published:
2022-10-27
Contact:
Min FANG
E-mail:15109285306@163.com;fanglabtg@163.com;haikun1990@163.com;bchen_0314@stu.xidian.edu.cn
About author:
Supported by:
Lingchi GE, Min FANG, Haikun LI, Bo CHEN. Label correlation for partial label learning[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1043-1051.
Table 2
Characteristics of real-world partial label data sets"
Data set | Example | Feature | Class | Avg. CLs | Task domain |
FG-NET | 1002 | 262 | 78 | 7.48 | Facial age estimation [ |
Lost | 1122 | 108 | 16 | 2.23 | Automatic face naming [ |
MSRCv2 | 1758 | 48 | 23 | 3.16 | Object classification [ |
BirdSong | 4998 | 38 | 13 | 2.18 | Bird song classification [ |
Soccer Player | 17472 | 279 | 171 | 2.09 | Automatic face naming [ |
Yahoo! News | 22991 | 163 | 219 | 1.91 | Automatic face naming [ |
Table 3
Classification accuracy (mean $ \pm $ std) of each comparing algorithm on real-world partial label data sets "
Data set | PL-LCSA | SDIM | PL-AGGD | PL-ECOC | IPAL | PL-KNN |
Lost | 0.789±0.030 | 0.797±0.030 | 0.744±0.020 | 0.706±0.043 | 0.645±0.034 | 0.459±0.039 |
MSRCv2 | 0.562±0.021 | 0.500±0.023 | 0.509±0.028 | 0.427±0.024 | 0.531±0.037 | 0.418±0.046 |
BirdSong | 0.756±0.008 | 0.734±0.012 | 0.734±0.009 | 0.751±0.013 | 0.712±0.015 | 0.603±0.013 |
Soccer Player | 0.596±0.013 | 0.577±0.016 | 0.539±0.016 | 0.169±0.005 | 0.544±0.014 | 0.494±0.012 |
Yahoo! News | 0.670±0.008 | 0.663±0.013 | 0.647±0.009 | 0.561±0.011 | 0.607±0.012 | 0.471±0.005 |
FG-NET | 0.079±0.020 | 0.076±0.037 | 0.076±0.027 | 0.005±0.007 | 0.061±0.018 | 0.066±0.018 |
Table 4
Classification accuracy (mean $ \pm $ std) of control variables for PL-LCSA on real-world data sets "
Data set | | | |
Lost | 0.789±0.030 | 0.767±0.032 | 0.746±0.025 |
MSRCv2 | 0.562±0.021 | 0.544±0.030 | 0.507±0.028 |
BirdSong | 0.756±0.008 | 0.751±0.010 | 0.733±0.011 |
Soccer Player | 0.596±0.013 | 0.589±0.013 | 0.538±0.015 |
Yahoo! News | 0.670±0.008 | 0.666±0.009 | 0.648±0.009 |
FG-NET | 0.079±0.020 | 0.071±0.023 | 0.077±0.024 |
1 | LIU L P, DIETTERICH T G A conditional multinomial mixture model for superset label learning. Advances in Neural Information Processing Systems, 2012, 1, 548- 556. |
2 | ZHOU D, ZHANG Z, ZHANG M L, et al Weakly supervised POS tagging without disambiguation. ACM Transactions on Asian and Low-Resource Language Information Processing, 2018, 17 (4): 1- 19. |
3 | ZENG Z N, XIAO S J, JIA K, et al Learning by associating ambiguously labeled images. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, 708- 715. |
4 |
YAO Y, DENG J H, CHEN X H, et al Deep discriminative CNN with temporal ensembling for ambiguously-labeled image classification. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12669- 12676.
doi: 10.1609/aaai.v34i07.6959 |
5 |
HULLERMEIER E, BERINGER J Learning from ambiguously labeled examples. Intelligent Data Analysis, 2006, 10 (5): 419- 439.
doi: 10.3233/IDA-2006-10503 |
6 | COUR T, SAPP B, TASKAR B Learning from partial labels. Journal of Machine Learning Research, 2011, 12, 1501- 1536. |
7 | NGUYEN N, CARUANA R Classification with partial labels. Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, 551- 559. |
8 | ZHANG M L, YU F Solving the partial label learning problem: an instance-based approach. Proc. of the International Joint Conference on Artificial Intelligence, 2015, 4048- 4054. |
9 | ZHANG M L, ZHOU B B, LIU X Y Partial label learning via feature-aware disambiguation. Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 1335- 1344. |
10 | GONG C, LIU T L, TANG Y Y, et al A regularization approach for instance-based superset label learning. IEEE Trans. on Cybernetics, 2017, 48 (3): 967- 978. |
11 | WANG D B, LI L, ZHANG M L Adaptive graph guided disambiguation for partial label learning. Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, 83- 91. |
12 |
LYU G Y, FENG S H, WANG T, et al GM-PLL: graph matching based partial label learning. IEEE Trans. on Knowledge and Data Engineering, 2021, 33 (2): 521- 535.
doi: 10.1109/TKDE.2019.2933837 |
13 | ZHU Y, KWOK J T, ZHOU Z H Multi-label learning with global and local label correlation. IEEE Trans. on Knowledge and Data Engineering, 2017, 30 (6): 1081- 1094. |
14 | FENG L, AN B Partial label learning by semantic difference maximization. Proc. of the International Joint Conference on Artificial Intelligence, 2019, 2294- 2300. |
15 | JIN R, GHAHRAMANI Z Learning with multiple labels. Proc. of the Annual Conference on Neural Information Processing Systems, 2002, 2, 897- 904. |
16 | YU F, ZHANG M L Maximum margin partial label learning. Proc. of the Asian Conference on Machine Learning, 2016, 96- 111. |
17 |
CHEN Y C, PATEL V M, CHELLAPPA R, et al Ambiguously labeled learning using dictionaries. IEEE Trans. on Information Forensics and Security, 2014, 9 (12): 2076- 2088.
doi: 10.1109/TIFS.2014.2359642 |
18 | TANG C Z, ZHANG M L Confidence-rated discriminative partial label learning. Proc. of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 2611- 1618. |
19 | LYU G Y, FENG S H, LI Y D, et al Hera: partial label learning by combining heterogeneous loss with sparse and low-rank regularization. ACM Trans. on Intelligent Systems and Technology, 2020, 11 (3): 1- 19. |
20 | ZHANG Y B, YANG G, ZHAO S Y, et al Partial label learning via generative adversarial nets. Proc. of the European Conference on Artificial Intelligence, 2020, 1674- 1681. |
21 |
ZHANG M L, YU F, TANG C Z Disambiguation-free partial label learning. IEEE Trans. on Knowledge and Data Engineering, 2017, 29 (10): 2155- 2167.
doi: 10.1109/TKDE.2017.2721942 |
22 | WU X, ZHANG M L Towards enabling binary decomposition for partial label learning. Proc. of the International Joint Conference on Artificial Intelligence, 2018, 2868- 2874. |
23 | YUILLE A L, RANGARAJAN A The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems, 2002, 2, 1033- 1040. |
24 | SRIPERUMBUDUR B K, LANCKRIET G R G On the convergence of the concave-convex procedure. Proc. of the Annual Conference on Neural Information Processing Systems, 2009, 9, 1759- 1767. |
25 |
XU S, YANG M, ZHOU Y, et al Partial label metric learning by collapsing classes. International Journal of Machine Learning and Cybernetics, 2020, 11, 2453- 2460.
doi: 10.1007/s13042-020-01129-z |
26 | LYU J Q, XU M, FENG L, et al Progressive identification of true labels for partial-label learning. Proc. of the International Conference on Machine Learning, 2020, 6500- 6510. |
27 |
YAN Y, GUO Y H Partial label learning with batch label correction. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 34 (4): 6575- 6582.
doi: 10.1609/aaai.v34i04.6132 |
28 |
PANIS G, LANITIS A, TSAPATSOULIS N, et al Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics, 2016, 5 (2): 37- 46.
doi: 10.1049/iet-bmt.2014.0053 |
29 | BRIGGS F, FERN X Z, RAICH R Rank-loss support instance machines for MIML instance annotation. Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, 534- 542. |
30 | GUILLAUMIN M, VERBEEK J, SCHMID C Multiple instance metric learning from automatically labeled bags of faces. European Conference on Computer Vision, 2010, 634- 647. |
[1] | Jujie Zhang, Min Fang, and Huimin Chai. Multi-label local discriminative embedding [J]. Systems Engineering and Electronics, 2017, 28(5): 1009-1018. |
[2] | Jun He and Qiang Fu. Posterior probability calculation procedure for recognition rate comparison [J]. Systems Engineering and Electronics, 2016, 27(3): 700-711. |
[3] | Xue Zhenxia, Liu Sanyang & Liu Wanli. Progressive transductive learning pattern classification via single sphere [J]. Journal of Systems Engineering and Electronics, 2009, 20(3): 643-650. |
[4] | Chen Aijun, Li Jinzong & Zhu Bing. Circular object recognition based on shape parameters [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 199-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||