Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (4): 924-937.doi: 10.23919/JSEE.2022.000090
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Xiaoli WU1,2,3(), Wentao WEI1,*(), Sabrina CALDWELL4(), Chengqi XUE2(), Linlin WANG2()
Received:
2021-01-11
Accepted:
2022-06-28
Online:
2022-08-30
Published:
2022-08-30
Contact:
Wentao WEI
E-mail:wuxlhhu@163.com;weiwentao@njust.edu.cn;sabrina.caldwell@anu.edu.au;ipd_xcq@seu.edu;353248644@qq.com
About author:
Supported by:
Xiaoli WU, Wentao WEI, Sabrina CALDWELL, Chengqi XUE, Linlin WANG. Optimization method for a radar situation interface from error-cognition to information feature mapping[J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 924-937.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Characterization of error factor of monitoring interface task [10] "
Interface | Task | |||
Task of monitoring interface A | A1 monitor/discover | A2 inquire state | A3 plan response | A4 execute response |
Display format of information B | B1 dynamic display | B2 static display | B3 navigation | B4 status data |
B5 information icon | B6 alarm reminder | |||
Cognitive behavior C | C1 search | C2 recognize | C3 identify | C4 judge&select |
C5 make decisions | ||||
Error factor D | D1 ignorance | D2 omission | D3 miss | D4 misreading |
D5 misjudgment | D6 misunderstanding | D7 haven’t seen | D8 confusion | |
D9 cannot remember | D10 input error | D11 misregistration | D12 cannot see clearly | |
D13 hard to distinguish | D14 match incorrectly | D15 cannot find | D16 delay | |
D17 inadequate | D18 irrelevant | D19 react too early | D20 no reaction | |
D21 select incorrectly | D22 slip | |||
Representation of error E | E1 ambiguity states | E2 visual limitation | E3 visual bluntness | E4 visual illusion |
E5 attentional load | E6 visual disturbance | E7 overattention | E8 attention shift and distraction | |
E9 too nervous to do anything | E10 cognitive bias | E11 unreasonable match | E12 weak visibility | |
E13 thinking load | E14 forget | E15 inaccurate recall | E16 lack of memory aids | |
E17 intentionality | E18 false memory | E19 unconsciousness | E20 omission caused by inattention | |
E21 time pressure |
Table 2
Probabilities of occurrence ${\boldsymbol{p}}_{{\boldsymbol{i}} }$ of possible executed tasks corresponding to the information features "
Information feature | Monitoring/discovery | Status inquiry | Response planning | Response execution |
cq1 | 0.55 | 0.25 | 0.125 | 0.175 |
cq2 | 0.35 | 0.45 | 0.08 | 0.12 |
cq3 | 0.25 | 0.55 | 0.175 | 0.025 |
cq4 | 0.35 | 0.35 | 0.125 | 0.175 |
cq5 | 0.25 | 0.25 | 0.375 | 0.175 |
cq6 | 0.125 | 0.225 | 0.35 | 0.3 |
cq7 | 0.375 | 0.325 | 0.155 | 0.145 |
Table 4
Relative weight of various objective constraints"
Objective constraint | RMC | Information capacity | Visual flow | Graphic-element relation | Task level | Relative weight |
RMC | 1 | 3 | 2 | 1/2 | 1/3 | 0.170 |
Information capacity | 1/3 | 1 | 1/2 | 1/3 | 1/5 | 0.068 |
Visual flow | 1/2 | 2 | 1 | 1/2 | 1/3 | 0.118 |
Graphic-element relation | 2 | 3 | 2 | 1 | 1/2 | 0.237 |
Task level | 3 | 5 | 3 | 2 | 1 | 0.407 |
1 |
GERO J S Creativity, emergence and evolution in design. Knowledge-Based System, 1996, 9 (7): 435- 448.
doi: 10.1016/S0950-7051(96)01054-4 |
2 |
YEH M, WICKENS C D Attentional filtering in the design of electronic map displays: a comparison of color coding, intensity coding, and decluttering techniques. Human Factors, 2001, 43 (4): 543- 562.
doi: 10.1518/001872001775870359 |
3 |
MONTGOMERY D A, SORKIN K D Observer sensitivity to element reliability in a multi-element visual display. Human Factors, 1996, 38 (3): 484- 494.
doi: 10.1518/001872096778702024 |
4 |
TULLIS T S An evaluation of alphanumeric, graphic, and color information displays. Human Factors, 1981, 23 (5): 541- 550.
doi: 10.1177/001872088102300504 |
5 | SCHUM D A The weighting of testimony in judicial proceeding from sources having reduced credibility. Human Factors, 1991, 33 (2): 172- 182. |
6 |
MONNIER P Redundant coding assessed in a visual search task. Displays, 2003, 24 (1): 49- 55.
doi: 10.1016/S0141-9382(02)00071-9 |
7 |
PARSONS P, SEDIG K Adjustable properties of visual representations: improving the quality of human-information interaction. Journal of the Association for Information Science and Technology, 2014, 65 (3): 455- 482.
doi: 10.1002/asi.23002 |
8 | LIANG M L Investigation on engineering psychology of aircraft cockpit instrument on the flight eight. Aviation Military Surgeon, 1984, 1, 60- 61. |
9 |
NEYEDLI H F, HOLLANDS J S, JAMIESON G A Beyond identity: incorporating system reliability information into an automated combat identification system. Human Factors, 2011, 53 (4): 338- 355.
doi: 10.1177/0018720811413767 |
10 |
WU X L, LI J, ZHOU F An experimental study of features search under visual interference in radar situation-interface. Chinese Journal of Mechanical Engineering, 2018, 31 (1): 45- 58.
doi: 10.1186/s10033-018-0245-2 |
11 | CHEN X J, NIU Y F, DING F, et al Application of electroencephalogram physiological experiment in interface design teaching: a case study of visual cognitive errors. Educational Sciences: Theory & Practice, 2018, 18 (5): 2306- 2324. |
12 | NIU Y F, XUE C Q, ZHOU X Z, et al Which is more prominent for fighter pilots under different flight task difficulties: visual alert or verbal alert?. International Journal of Industrial Ergonomics, 2019, 72 (7): 146- 157. |
13 |
SHAO J K, NIU Y F, XUE C Q, et al Single-channel SEMG using wavelet deep belief networks for upper limb motion recognition. International Journal of Industrial Ergonomics, 2020, 76, 102905.
doi: 10.1016/j.ergon.2019.102905 |
14 | SHEN Z, XUE C, WANG H. Effects of users’ familiarity with the objects depicted in icons on the cognitive performance of icon identification. I-Perception, 2018, 9(3): 2041669518780807. |
15 | NIELSEN J, MACK R L. Usability inspection methods. New York: Wiley, 1994. |
16 |
SHRYANE N M, WESTERMAN S J, CRAWSHAW C M, et al Task analysis for the investigation of human error in safety critical software design: a convergent methods approach. Ergonomics, 1998, 41 (11): 1719- 1736.
doi: 10.1080/001401398186153 |
17 | LI L S. Design of human-computer interfaces. Beijing: Science Press, 2004. (in Chinese) |
18 |
HASSNERT M, ALLWOOD C M Development context and ease of use of three programs for self-registration of unemployed people. Computers in Human Behavior, 2002, 18 (3): 191- 221.
doi: 10.1016/S0747-5632(01)00037-1 |
19 | MAXION R A, REEDER R W Improving user-interface dependability through mitigation of human error. International Journal of Human-computer Studies, 2005, 63 (1/2): 25- 50. |
20 |
ROCA J, LUPIANEZ J, LOPEZ-RAMON M F, et al Are drivers’ attentional lapses associated with the functioning of the neurocognitive attentional networks and with cognitive failure attentional networks and with cognitive failure in everyday life?. Transportation Research Part F, 2013, 17 (2): 98- 113.
doi: 10.1016/j.trf.2012.10.005 |
21 |
SHAPPELL S, DETWILER, C, HOLCOMB K, et al Human error and commercial aviation accidents: an analysis using the human factors analysis and classification system. Human Factors, 2007, 49 (2): 227- 242.
doi: 10.1518/001872007X312469 |
22 | ANOKHIN A N, MARSHALL E C The practice of main control room ergonomics assessment and validation using simulation tools. Proc. of the 6th American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, 2009, 2472- 2483. |
23 | SHEN Z P, WANG T, GAO J. Theory and manager application of human error cognition model. Beijing: Tsinghua University, 2009. (in Chinese) |
24 | WANG P, RAO P L A driver’s perception and comprehension of traffic signs in Beijing. Industrial Engineering Journal, 2011, 14 (1): 114c117. |
25 | LI P C. Study on human error and reliability in digital control system of nuclear power plant. Changsha: South China University of Technology, 2011. (in Chinese) |
26 | PAHL G, BEITZ W. Engineering design: a systematic approach. London: Springer-Verlag, 1996. |
27 | SUH N P. Axiomatic design advances and applications. New York: Oxford University Press, 2000. |
28 |
WU X L, XUE C Q, WANG H Y, et al E-C mapping model based on human computer interaction interface of complex system. Journal of Mechanical Engineering, 2014, 50 (12): 206- 212.
doi: 10.3901/JME.2014.12.206 |
29 | WU X L, XUE C Q, TANG W C, et al Experimental study on visual limitation experiment of goal-seeking in radar situation-interface. Journal of Southeast University (Natural Science Edition), 2014, 44 (6): 1166- 1170. |
30 | LEE J W, KIM S H Using analytic network process and goal programming for interdependent information system project selection. Computer & Operation Research, 2000, 27 (4): 367- 382. |
31 | DEMIR I, KRAJEWSKI W F Towards an integrated flood information system: centralized data accesseee, analysis, and visualization. Environmental Modelling & Software, 2013, 50 (12): 77- 84. |
32 | HU Y Q, GUO Y H. Tutorials on operational research. Beijing: Publication Press of Tsinghua University, 1998. (in Chinese) |
33 | SHANNON C E, WEAVER W. The mathematical theory of communications. Urbana: University of Illinois Press, 1949. |
34 | WICKENS C D, HOLIANDS J G. Engineering psychology & human performance. Shanghai: East China Normal University Press, 2003. |
35 | WU X L. Error-cognition mechanism of interaction interface in complex information. Beijing: Science Press, 2017. (in Chinese) |
36 | DING Y L. Man machine engineering. Beijing: Beijing Institute of Technology Press, 2000. (in Chinese) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||