Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (4): 877-886.doi: 10.23919/JSEE.2022.000085
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Yumeng SU(), Hongyuan GAO*(), Shibo ZHANG()
Received:
2020-10-19
Accepted:
2022-03-01
Online:
2022-08-30
Published:
2022-08-30
Contact:
Hongyuan GAO
E-mail:suyumeng1994@126.com;gaohongyuan@hrbeu.edu.cn;liangziyanhua@126.com
About author:
Supported by:
Yumeng SU, Hongyuan GAO, Shibo ZHANG. Energy-efficient resource management for CCFD massive MIMO systems in 6G networks[J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 877-886.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation parameters"
Parameter | Value |
Number of antennas at the BS | 128 |
Number of users | 10 |
Coverage of the BS/m | 500 |
Path loss exponent | 3.8 |
Reference distance/m | 100 |
Energy conversion efficiency | 0.5 |
Transmission power of the BS/dBm | 35 |
Maximum transmission power of users/dBm | 30 |
SIC level/dB | ?20 |
Circuit power consumption/dBm | 10 |
System bandwidth/MHz | 10 |
Minimum uplink/downlink transmission rate/(Mbit·s?1) | 1 |
Noise power spectral density/(dBm·Hz?1) | ?174 |
1 |
YAACOUB E, ALOUINI M S A key 6G challenge and opportunity—connecting the base of the pyramid: a survey on rural connectivity. Proceedings of the IEEE, 2020, 108 (4): 533- 582.
doi: 10.1109/JPROC.2020.2976703 |
2 |
SAAD W, BENNIS M, CHEN M Z A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Network, 2020, 34 (3): 134- 142.
doi: 10.1109/MNET.001.1900287 |
3 |
SERGIOU C, LESTAS M, ANTONIOU P, et al Complex systems: a communication networks perspective towards 6G. IEEE Access, 2020, 8, 89007- 89030.
doi: 10.1109/ACCESS.2020.2993527 |
4 |
ZHANG L, LIANG Y C, NIYATO D 6G visions: mobile ultra-broadband, super Internet-of-Things, and artificial intelligence. China Communications, 2019, 16 (8): 1- 14.
doi: 10.23919/JCC.2019.08.001 |
5 |
HUANG T Y, YANG W, WU J, et al A survey on green 6G network: architecture and technologies. IEEE Access, 2019, 7, 175758- 175768.
doi: 10.1109/ACCESS.2019.2957648 |
6 |
DONG W, XU Z H, LI X X, et al Low-cost subarrayed sensor array design strategy for IoT and future 6G applications. IEEE Internet of Things Journal, 2020, 7 (6): 4816- 4826.
doi: 10.1109/JIOT.2020.2969247 |
7 |
CHANG K C, CHU K C, WANG H C, et al Energy saving technology of 5G base station based on Internet of Things collaborative control. IEEE Access, 2020, 8, 32935- 32946.
doi: 10.1109/ACCESS.2020.2973648 |
8 | CHENG W G, ZHANG X, ZHANG H L Statistical-QoS driven energy-efficiency optimization over green 5G mobile wireless networks. IEEE Journal on Selected Areas in Communications, 2016, 34 (12): 3092- 3107. |
9 |
QI Q, CHEN X M, ZHONG C T, et al Integration of energy, computation and communication in 6G cellular Internet of Things. IEEE Communications Letters, 2020, 24 (6): 1333- 1337.
doi: 10.1109/LCOMM.2020.2982151 |
10 |
MARZETTA T L Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. on Wireless Communications, 2010, 9 (11): 3590- 3600.
doi: 10.1109/TWC.2010.092810.091092 |
11 |
LV T J, LIN Z P, HUANG P M, et al Optimization of the energy-efficient relay-based massive IoT network. IEEE Internet of Things Journal, 2018, 5 (4): 3043- 3058.
doi: 10.1109/JIOT.2018.2829827 |
12 |
HOANG T M, DUONG T Q, TUAN H D, et al Secure massive MIMO relaying systems in a Poisson field of eavesdroppers. IEEE Trans. on Communications, 2017, 65 (11): 4857- 4870.
doi: 10.1109/TCOMM.2017.2723565 |
13 |
LIU Y, WANG C X, HUANG J, et al Novel 3-D nonstationary mmwave massive MIMO channel models for 5G high-speed train wireless communications. IEEE Trans. on Vehicular Technology, 2019, 68 (3): 2077- 2086.
doi: 10.1109/TVT.2018.2866414 |
14 |
RAWAT D B, WHITE T, PARWEZ M S, et al Evaluating secrecy outage of physical layer security in large-scale MIMO wireless communications for cyber-physical systems. IEEE Internet of Things Journal, 2017, 4 (6): 1987- 1993.
doi: 10.1109/JIOT.2017.2691352 |
15 |
HUANG B, GUO A H Spectral and energy efficient resource allocation for massive MIMO HetNets with wireless backhaul. IEEE Wireless Communications Letters, 2019, 8 (2): 552- 555.
doi: 10.1109/LWC.2018.2879428 |
16 | ALBREEM M A, JUNTTI M, SHAHABUDDIN S. Massive MIMO detection techniques: a survey. IEEE Communications Surveys & Tutorials. 2019, 21(4): 3109–3132. |
17 | GAO X, EDFORS O, TUFVESSON F, et al Massive MIMO in real propagation environments: do all antennas contribute equally? IEEE Trans. on Communications, 2015, 63 (11): 3917- 3928. |
18 |
PUGLIELLI A, TOWNLEY A, LACAILLE G, et al Design of energy- and cost-efficient massive MIMO arrays. Proceedings of the IEEE, 2016, 104 (3): 586- 606.
doi: 10.1109/JPROC.2015.2492539 |
19 |
ASAAD S, RABIEI A M, MULLER R R Massive MIMO with antenna selection: fundamental limits and applications. IEEE Trans. on Wireless Communications, 2018, 17 (12): 8502- 8516.
doi: 10.1109/TWC.2018.2877992 |
20 |
GAO Y, VINCK H, KAISER T Massive MIMO antenna selection: switching architectures, capacity bounds, and optimal antenna selection algorithms. IEEE Trans. on Signal Processing, 2018, 66 (5): 1346- 1360.
doi: 10.1109/TSP.2017.2786220 |
21 |
TANG H, ZONG X Z, NIE Z P Global-searching-based iterative swapping antenna selection for massive MIMO systems with imperfect channel estimation. IEEE Access, 2018, 6, 66557- 66564.
doi: 10.1109/ACCESS.2018.2878732 |
22 |
BENMIMOUNE M, DRIOUCH E, AJIB W, et al Novel transmit antenna selection strategy for massive MIMO downlink channel. Wireless Networks, 2017, 23, 2473- 2484.
doi: 10.1007/s11276-016-1297-9 |
23 |
GHAZANFARI A, BJORNSON E, LARSSON E G Optimized power control for massive MIMO with underlaid D2D communications. IEEE Trans. on Communications, 2019, 67 (4): 2763- 2778.
doi: 10.1109/TCOMM.2018.2890240 |
24 |
ZAPPONE A, SANGUINETTI L, BACCI G, et al Energy-efficient power control: a look at 5G wireless technologies. IEEE Trans. on Signal Processing, 2016, 64 (7): 1668- 1683.
doi: 10.1109/TSP.2015.2500200 |
25 |
LIU X X, LI Y Z, XIAO L M, et al Performance analysis and power control for multi-antenna V2V underlay massive MIMO. IEEE Trans. on Wireless Communications, 2018, 17 (7): 4374- 4387.
doi: 10.1109/TWC.2018.2824333 |
26 | SHEN J C, ZHANG J, ALSUSA E, et al Compressed CSI acquisition in FDD massive MIMO: how much training is needed? IEEE Trans. on Wireless Communications, 2016, 15 (6): 4145- 4156. |
27 |
LIAN L X, LIU A, LAU V K N Exploiting dynamic sparsity for downlink FDD-massive MIMO channel tracking. IEEE Trans. on Signal Processing, 2019, 67 (8): 2007- 2021.
doi: 10.1109/TSP.2019.2896179 |
28 |
KHALILSARAI M B, HAGHIGHATSHOAR S, YI X P, et al FDD massive MIMO via UL/DL channel covariance extrapolation and active channel sparsification. IEEE Trans. on Wireless Communications, 2019, 18 (1): 121- 135.
doi: 10.1109/TWC.2018.2877684 |
29 |
JIAO B L, LIU S J, LEI Y M, et al A networking solution on uplink channel of co-frequency and co-time system. China Communications, 2016, 13 (2): 183- 188.
doi: 10.1109/CC.2016.7405734 |
30 |
MA M, TIAN S Y, CHEN Y Y, et al A prototype of co-frequency co-time full duplex networking. IEEE Wireless Communications, 2020, 27 (1): 132- 139.
doi: 10.1109/MWC.001.1800565 |
31 |
KAIMKHANI N A, CHEN Z, YIN F L Self-interference elimination by physical feedback channel in CCFD for 3-D beamforming communication. China Communications, 2017, 14 (9): 62- 71.
doi: 10.1109/CC.2017.8068765 |
32 | ZHAO H Z, WANG J, TANG Y X Performance analysis of RF self-interference cancellation in broadband full duplex systems. Proc. of the IEEE International Conference on Communications Workshops, 2016, 175- 179. |
33 |
XIA X C, XU K, ZHANG D M, et al Beam-domain full-duplex massive MIMO: realizing co-time co-frequency uplink and downlink transmission in the cellular system. IEEE Trans. on Vehicular Technology, 2017, 66 (10): 8845- 8862.
doi: 10.1109/TVT.2017.2698160 |
34 |
LI L X, PETROPULU A P, CHEN Z MIMO secret communications against an active eavesdropper. IEEE Trans. on Information Forensics and Security, 2017, 12 (10): 2387- 2401.
doi: 10.1109/TIFS.2017.2705618 |
35 |
GAO H Y, SU Y M, ZHANG S B, et al Joint antenna selection and power allocation for secure co-time co-frequency full-duplex massive MIMO systems. IEEE Trans. on Vehicular Technology, 2021, 70 (1): 655- 665.
doi: 10.1109/TVT.2020.3048854 |
36 |
HUANG Y M, HE S W, WANG J H, et al Spectral and energy efficiency tradeoff for massive MIMO. IEEE Trans. on Vehicular Technology, 2018, 67 (8): 6991- 7002.
doi: 10.1109/TVT.2018.2824311 |
37 | DAS P P, CHAKRABORTY N, ALLAYEAR S M. Optimal coverage of wireless sensor network using termite colony optimization algorithm. Proc. of the 2nd International Conference on Electrical Engineering and Information Communication Technology, 2015. DOI: 10.1190/ICEEICT.2015.7307523. |
38 |
GAO H Y, ZHANG S B, SU Y M, et al Joint resource allocation and power control algorithm for cooperative D2D heterogeneous networks. IEEE Access, 2019, 7, 20632- 20643.
doi: 10.1109/ACCESS.2019.2895975 |
39 |
XU J, GUO C C, ZHANG H Joint channel allocation and power control based on PSO for cellular networks with D2D communications. Computer Networks, 2018, 133, 104- 119.
doi: 10.1016/j.comnet.2018.01.017 |
40 | WANG S, DA X Y, LI M D, et al. Adaptive backtracking search optimization algorithm with pattern search for numerical optimization. Journal of Systems Engineering and Electronics, 2016, 27(2): 395–406. |
[1] | Yang SU, Ting CHENG, Zishu HE, Xi LI, Yanxi LU. Adaptive resource management for multi-target tracking in co-located MIMO radar based on time-space joint allocation [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 916-927. |
[2] | Ruoyu ZHANG, Honglin ZHAO, Jiayan ZHANG, Shaobo JIA. Hybrid orthogonal and non-orthogonal pilot distribution based channel estimation in massive MIMO system [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 881-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||