Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 748-758.doi: 10.23919/JSEE.2022.000068
• RELIABILITY • Previous Articles Next Articles
ZHANG Ao1(), Zhihua WANG1(), Qiong WU2,*(), Chengrui LIU3()
Received:
2020-12-30
Online:
2022-06-18
Published:
2022-06-24
Contact:
Qiong WU
E-mail:buaazhangao@hotmail.com;wangzhihua@buaa.edu.cn;wing21@126.com;liuchengrui_502@163.com
About author:
Supported by:
ZHANG Ao, Zhihua WANG, Qiong WU, Chengrui LIU. Generalized degradation reliability model considering phase transition[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 748-758.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Biases and MSEs of the ML estimates based on M0"
m | True | | | | | |
1 | 1 | 2 | 1 | 1.5 | ||
5 | Bias | ?0.019 3 | 0.013 4 | ?0.014 7 | 0.068 8 | ?0.004 3 |
MSE | 0.017 6 | 0.037 7 | 0.129 1 | 0.122 8 | 0.010 3 | |
10 | Bias | ?0.010 5 | 0.009 3 | ?0.006 5 | 0.027 5 | ?0.004 5 |
MSE | 0.009 1 | 0.018 2 | 0.061 4 | 0.060 3 | 0.005 2 | |
15 | Bias | ?0.011 2 | 0.007 1 | 0.0001 4 | 0.023 9 | ?0.002 2 |
MSE | 0.006 1 | 0.011 7 | 0.042 3 | 0.041 9 | 0.003 5 | |
20 | Bias | ?0.006 1 | 0.007 3 | ?0.006 8 | 0.018 0 | ?0.001 4 |
MSE | 0.005 1 | 0.009 5 | 0.032 7 | 0.032 7 | 0.002 5 |
Table 2
Comparison results of M0, M1, M2, and M3"
m | Model | Log-LF | AIC | t0.5 | t0.9 |
5 | M0 | ?118.3 | 246.6 | 1.520 | 0.623 0 |
M1 | ?130.3 | 268.6 | 4.477 | 2.114 | |
M2 | ?130.6 | 269.2 | 3.961 | 1.998 | |
M3 | ?153.4 | 312.8 | 14.45 | 11.60 | |
10 | M0 | ?239.0 | 487.9 | 0.785 5 | 0.333 7 |
M1 | ?261.9 | 531.7 | 3.622 | 1.686 | |
M2 | ?262.5 | 533.1 | 3.107 | 1.573 | |
M3 | ?309.7 | 625.5 | 13.02 | 14.36 | |
15 | M0 | ?359.1 | 728.1 | 0.525 4 | 0.212 2 |
M1 | ?393.1 | 794.1 | 3.331 | 1.544 | |
M2 | ?394.0 | 796.1 | 2.818 | 1.432 | |
M3 | ?465.2 | 936.4 | 12.42 | 15.02 | |
20 | M0 | ?480.6 | 971.3 | 0.443 4 | 0.180 0 |
M1 | ?525.7 | 1 059 | 3.271 | 1.498 | |
M2 | ?527.0 | 1 062 | 2.757 | 1.383 | |
M3 | ?622.7 | 1 251 | 12.45 | 15.60 |
Table 3
Comparisons of four degradation models with LCD data"
Model | | | | | | | Log-LF | AIC | | |
M0 | 1.255 7 | 1.280 4 | 0.669 2 | 1.892 4e?5 | 7.364 2e?6 | 1.978 0 | ?31.420 9 | 74.841 8 | 859.5 | 761.8 |
M1 | 0.144 9 | 0.654 4 | ? | 9.865 6e?3 | 4.608 0e?3 | ? | ?48.241 0 | 104.481 9 | 1 078.1 | 839.0 |
M2 | 0.221 4 | 0.273 3 | ? | 9.865 6e?3 | 4.608 0e?3 | ? | ?48.012 0 | 104.024 1 | 1 074.6 | 835.6 |
M3 | 6.083 4 | 8.518 7 | 0.221 3 | ? | ? | ? | ?89.503 5 | 185.006 9 | 972.1 | 273.9 |
1 |
YE Z S, WANG Y, TSUI K L, et al Degradation data analysis using Wiener processes with measurement errors. IEEE Trans. on Reliability, 2013, 62 (4): 772- 780.
doi: 10.1109/TR.2013.2284733 |
2 |
WANG Z Z, CHEN Y X, CAI Z Y, et al Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold. Journal of Systems Engineering and Electronics, 2020, 31 (2): 415- 431.
doi: 10.23919/JSEE.2020.000018 |
3 |
NICOLAI R P, DEKKER R, VAN NOORTWIJK J M A comparison of models for measurable deterioration: an application to coatings on steel structures. Reliability Engineering and System Safety, 2007, 92 (12): 1635- 1650.
doi: 10.1016/j.ress.2006.09.021 |
4 |
CHEN C, LU N Y, JIANG B, et al Condition-based maintenance optimization for continuously monitored degrading systems under imperfect maintenance actions. Journal of Systems Engineering and Electronics, 2020, 31 (4): 841- 851.
doi: 10.23919/JSEE.2020.000057 |
5 |
WANG X, XU D H An inverse gaussian process model for degradation data. Technometrics, 2010, 52 (2): 188- 197.
doi: 10.1198/TECH.2009.08197 |
6 | CHEN X D, SUN X L, JI G X, et al Mis-specification analysis of inverse Gaussian degradation processes model. Systems Engineering and Electronics, 2019, 41 (3): 693- 700. |
7 |
WHITMORE G A, SCHENKELBERG F Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Analysis, 1997, 3 (1): 27- 45.
doi: 10.1023/A:1009664101413 |
8 |
LI N P, LEI Y G, GUO L, et al Remaining useful life prediction based on a general expression of stochastic process models. IEEE Trans. on Industrial Electronics, 2017, 64 (7): 5709- 5718.
doi: 10.1109/TIE.2017.2677334 |
9 |
ZHANG Y, LIAO H T Analysis of destructive degradation tests for a product with random degradation initiation time. IEEE Trans. on Reliability, 2015, 64 (1): 516- 527.
doi: 10.1109/TR.2014.2336411 |
10 |
YE Z S, CHEN N The inverse Gaussian process as a degradation model. Technometrics, 2014, 56 (3): 302- 311.
doi: 10.1080/00401706.2013.830074 |
11 |
YE Z S, CHEN L, TANG L C, et al Accelerated degradation test planning using the inverse Gaussian process. IEEE Trans. on Reliability, 2014, 63 (3): 750- 763.
doi: 10.1109/TR.2014.2315773 |
12 |
KANG R, GONG W J, CHEN Y X Model-driven degradation modeling approaches: investigation and review. Chinese Journal of Aeronautics, 2020, 33 (4): 1137- 1153.
doi: 10.1016/j.cja.2019.12.006 |
13 |
SI X S, WANG W, HU C H, et al Remaining useful life estimation−a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213 (1): 1- 14.
doi: 10.1016/j.ejor.2010.11.018 |
14 |
YE Z S, XIE M Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry, 2015, 31 (1): 16- 32.
doi: 10.1002/asmb.2063 |
15 |
ZHANG Z X, SI X S, HU C H, et al Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods. European Journal of Operational Research, 2018, 271 (3): 775- 796.
doi: 10.1016/j.ejor.2018.02.033 |
16 |
JARDINE A K S, LIN D, BANJEVIC D A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 2006, 20 (7): 1483- 1510.
doi: 10.1016/j.ymssp.2005.09.012 |
17 |
TSUI K L, CHEN N, ZHOU Q, et al Prognostics and health management: a review on data driven approaches. Mathematical Problems in Engineering, 2015, 2015, 793161.
doi: 10.1155/2015/793161 |
18 |
BAE S J, KIM S J, KIM M S, et al Degradation analysis of nano-contamination in plasma display panels. IEEE Trans. on Reliability, 2008, 57 (2): 222- 229.
doi: 10.1109/TR.2008.917823 |
19 |
WANG X L, JIANG P, GUO B, et al Real-time reliability evaluation for an individual product based on change-point gamma and Wiener process. Quality and Reliability Engineering International, 2014, 30 (4): 513- 525.
doi: 10.1002/qre.1504 |
20 |
WANG W B A model to predict the residual life of rolling element bearings given monitored condition information to date. IMA Journal of Management Mathematics, 2002, 13 (1): 3- 16.
doi: 10.1093/imaman/13.1.3 |
21 |
WILSON E B, HILFERTY M M The distribution of chi-square. Proceedings of the National Academy of Sciences, 1931, 17 (12): 684- 688.
doi: 10.1073/pnas.17.12.684 |
22 |
YAN W A, SONG B W, DUAN G L, et al Real-time reliability evaluation of two-phase Wiener degradation process. Communications in Statistics−Theory and Methods, 2017, 46 (1): 176- 188.
doi: 10.1080/03610926.2014.988262 |
23 |
WANG P P, TANG Y C, JOO BAE S, et al Bayesian analysis of two-phase degradation data based on change-point Wiener process. Reliability Engineering & System Safety, 2018, 170, 244- 256.
doi: 10.1016/j.ress.2017.09.027 |
24 |
WANG P, TANG Y, BAE S J, et al Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors. IEEE Trans. on Reliability, 2018, 67 (2): 688- 700.
doi: 10.1109/TR.2017.2785978 |
25 |
ZHANG J X, HU C H, HE X, et al A novel lifetime estimation method for two-phase degrading systems. IEEE Trans. on Reliability, 2019, 68 (2): 689- 709.
doi: 10.1109/TR.2018.2829844 |
26 |
NG T S An application of the EM algorithm to degradation modeling. IEEE Trans. on Reliability, 2008, 57 (1): 2- 13.
doi: 10.1109/TR.2008.916867 |
27 |
WANG H Y, MA X B, ZHAO Y A mixed-effects model of two-phase degradation process for reliability assessment and RUL prediction. Microelectronics Reliability, 2020, 107, 113622.
doi: 10.1016/j.microrel.2020.113622 |
28 | DONG Q L, CUI L R A study on stochastic degradation process models under different types of failure thresholds. Reliability Engineering & System Safety, 2019, 181, 202- 212. |
29 |
YE Z S, CHEN N, SHEN Y A new class of Wiener process models for degradation analysis. Reliability Engineering & System Safety, 2015, 139, 58- 67.
doi: 10.1016/j.ress.2015.02.005 |
30 | ZHAO J Y, LIU F Reliability assessment of the metallized film capacitors from degradation data. Microelectronics Reliability, 2007, 47 (2/3): 434- 436. |
31 |
SI X S, WANG W, HU C H, et al Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Trans. on Reliability, 2012, 61 (1): 50- 67.
doi: 10.1109/TR.2011.2182221 |
32 | WANG X L, BALAKRISHNAN N, GUO B Residual life estimation based on a generalized Wiener degradation process. Reliability Engineering & System Safety, 2014, 124, 13- 23. |
33 |
LI J X, WANG Z H, ZHANG Y B, et al Degradation data analysis based on a generalized Wiener process subject to measurement error. Mechanical Systems and Signal Processing, 2017, 94, 57- 72.
doi: 10.1016/j.ymssp.2017.02.031 |
34 | CHEN N, TSUI K L Condition monitoring and remaining useful life prediction using degradation signals: revisited. IIE Transactions, 2013, 45 (9): 939- 952. |
35 |
HE W, WILLIARD N, OSTERMAN M, et al Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 2011, 196 (23): 10314- 10321.
doi: 10.1016/j.jpowsour.2011.08.040 |
36 | WANG X L, GUO B, CHENG Z J Real-time reliability evaluation of equipment based on separated-phase Wiener-Einstein process. Journal of Central South University (Science and Technology), 2012, 43 (2): 534- 540. |
37 |
LAGARIAS J C, REEDS J A, WRIGHT M H, et al Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization, 1998, 9 (1): 112- 147.
doi: 10.1137/S1052623496303470 |
38 | VAN NOORTWIJK J M A survey of the application of gamma processes in maintenance. Reliability Engineering & System Safety, 2009, 94 (1): 2- 21. |
[1] | Xiaomei LIU, Naiming XIE. Grey-based approach for estimating software reliability under nonhomogeneous Poisson process [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 360-369. |
[2] | Ying CHEN, Yanfang WANG, Song YANG, Rui KANG. System reliability evaluation method considering physical dependency with FMT and BDD analytical algorithm [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 222-232. |
[3] | Steven Xianchuan DING, Linlin LI, Bin JIANG. Unified control and detection framework and its applications: a review, some new results, and future perspectives [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 995-1013. |
[4] | Yun LI, Kaige JIANG, Ting ZENG, Wenbin CHEN, Xiaoyang LI, Deyong LI, Zhiqiang ZHANG. Belief reliability modeling and analysis for planetary reducer considering multi-source uncertainties and wear [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1246-1262. |
[5] | Fuqiang SUN, Hongxuan GUO, Jingcheng LIU. Reliability modeling of the bivariate deteriorating product with both monotonic and non-monotonic degradation paths [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 971-983. |
[6] | Qingan QIU, Lirong CUI. Reliability modelling based on dependent two-stage virtual age processes [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 711-721. |
[7] | Junliang LI, Yueliang CHEN, Yong ZHANG, Zhuzhu ZHANG, Weijie FAN. Availability modelling for periodically inspected systems under mixed maintenance policies [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 722-730. |
[8] | Tianpei ZU, Rui KANG, Meilin WEN. Graduation formula: a new method to construct belief reliability distribution under epistemic uncertainty [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 626-633. |
[9] | Tao WANG, Jinyan CAI, Yafeng MENG, Sai ZHU. A reliability evaluation method for embryonic cellular array based on Markov status graph model [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 432-446. |
[10] | Hongwei WANG, Yuxiao CHEN. Parameter estimation for dual-rate sampled Hammerstein systems with dead-zone nonlinearity [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 185-193. |
[11] | Zhongyi CAI, Zezhou WANG, Yunxiang CHEN, Jiansheng GUO, Huachun XIANG. Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 194-205. |
[12] | Junru REN, Wenhao GUI. A statistical inference for generalized Rayleigh model under Type-Ⅱ progressive censoring with binomial removals [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 206-223. |
[13] | Tingting HUANG, Bo PENG, Yuepu ZHAO, Zixuan YU. Reliability assessment considering stress drift and shock damage caused by stress transition shocks in a dynamic environment [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 1025-1034. |
[14] | Xing PAN, Huixiong WANG, Ye LIN, Tun LIU, Xiaoxia WANG. HEP quantification strategy based on modified CREAM [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 815-822. |
[15] | Xujun SU, Xuezhi LYU. Reliability simulation and analysis of phased-mission system with multiple states [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 624-632. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||