Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 737-747.doi: 10.23919/JSEE.2022.000027
• CONTROL THEORY AND APPLICATION • Previous Articles Next Articles
Jinfeng LYU1,2(), Fucai LIU1,*(), Yaxue REN1()
Received:
2020-03-22
Online:
2022-06-18
Published:
2022-06-24
Contact:
Fucai LIU
E-mail:xfyy0308@163.com;lfc@ysu.edu.cn;2592863354@qq.com
About author:
Supported by:
Jinfeng LYU, Fucai LIU, Yaxue REN. Fuzzy identification of nonlinear dynamic system based on selection of important input variables[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 737-747.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Performance comparison of IVS based on TSFC for Example 2 (Case 1)"
Model | Input variables | Number of rules | MSE |
FCM | | 2 | 0.4243 |
TSFC+FCM | | 2 | 0.1655 |
FCM | | 2 | 0.0757 |
TSFC+FCM | | 2 | 0.0609 |
FCM | | 2 | 0.0570 |
TSFC+FCM | | 2 | 0.0545 |
Table 3
Performance contrast of different fuzzy models for Example 2 (Case 1)"
Model | Input | c | MSE1 (Train) | MSE2 (Test) |
FCM | | 2 | 0.3252 | 0.9611 |
TSFC+FCM | | 2 | 0.0801 | 0.3803 |
FCM | | 2 | 0.0305 | 0.5387 |
TSFC+FCM | | 2 | 0.0164 | 0.1679 |
FCM | | 2 | 0.0171 | 0.1438 |
TSFC+FCM | | 2 | 0.0152 | 0.1707 |
Table 5
Performance comparison of different fuzzy models for Example 2 (Case 2)"
Model | Number of rules | MSE1 (Train) | MSE2 (Test) |
Tsekouras [ | 7 | 0.022 | 0.236 |
Li et al. [ | 3 | 0.0159 | 0.1255 |
Li et al. [ | 3 | 0.0150 | 0.1470 |
Luo et al. [ | 2 | 0.0254 | 0.1243 |
Yan et al. [ | 2 | 0.0168 | 0.1402 |
Li et al. [ | 3 | 0.0149 | 0.1324 |
Our model | 2 | 0.0152 | 0.1707 |
Our model | 3 | 0.0150 | 0.1567 |
Table 6
Performance comparison of IVS based on TSFC for pneumatic system"
Model | Input | Number of rules | MSE |
FCM | | 3 | 24.4626 |
TSFC-FCM | | 3 | 3.0505 |
FCM | | 3 | 14.8809 |
TSFC-FCM | | 3 | 2.0168 |
1 | SNIEDER E, SHAKIR R, KHAN U T. A comprehensive comparison of four input variable selection methods for artificial neural network flow forecasting models. Journal of Hydrology, 2019. DOI: 10.1016/j.jhydrol.2019.124299. |
2 |
CHEN S F, GU H, TU M Y, et al Robust variable selection based on bagging classification tree for support vector machine in metabonomic data analysis. Journal of Chemometrics, 2018, 32 (11): e2921.
doi: 10.1002/cem.2921 |
3 |
KANG R, ZHANG X K, LIU H J, et al Selection of optimal combinations of inputs in a partial least squares model for prediction of soil organic matter. Spectroscopy Letters, 2018, 51 (7): 373- 381.
doi: 10.1080/00387010.2018.1485706 |
4 |
WANG Y X, JIA Z H, YANG J A variable selection method of the significance multivariate correlation competitive population analysis for near-infrared spectroscopy in chemical modeling. IEEE Access, 2019, 7, 167195- 167209.
doi: 10.1109/ACCESS.2019.2954115 |
5 |
KIM G H, KIM S H Variable selection for artificial neural networks with applications for stock price prediction. Applied Artificial Intelligence, 2019, 33 (1): 54- 67.
doi: 10.1080/08839514.2018.1525850 |
6 | TAKAGI T, SUGENO M Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man, and Cybernetics, 1985, 15 (1): 116- 132. |
7 | SUGENO M, YASUKAWA T A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. on Fuzzy Systems, 1993, 122 (1): 7- 31. |
8 |
LI C S, ZHOU J Z, XIANG X Q, et al T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 646- 653.
doi: 10.1016/j.engappai.2009.02.003 |
9 |
CHANG C W, TAO C W A novel approach to implement Takagi–Sugeno fuzzy models representation. IEEE Trans. on Cybernetics, 2017, 47 (9): 2353- 2361.
doi: 10.1109/TCYB.2017.2701900 |
10 |
LUO M N, SUN F C, LIU H P Hierarchical sparse representation for T-S fuzzy systems identification. IEEE Trans. on Fuzzy Systems, 2013, 21 (6): 1032- 1043.
doi: 10.1109/TFUZZ.2013.2240690 |
11 |
GUO F, LIN L, XIE X, et al Novel hybrid rule network based on TS fuzzy rules. Neural Network World, 2015, 25 (1): 93- 116.
doi: 10.14311/NNW.2015.25.005 |
12 | ZHAO K, LI S R, KANG Z J. Takagi-Sugeno fuzzy modeling and control of nonlinear system with adaptive clustering algorithms. Proc. of the 10th International Conference on Modelling, Identification and Control, 2018: 1−6. |
13 |
ZOU W, LI C S, ZHANG N A T-S fuzzy model identification approach based on a modified inter Type-2 FRCM algorithm. IEEE Trans. on Fuzzy Systems, 2018, 26 (3): 1104- 1113.
doi: 10.1109/TFUZZ.2017.2704542 |
14 |
LI C S, ZOU W, ZHANG N, et al An evolving T-S fuzzy model identification approach based on a special membership function and its application on pump-turbine governing system. Engineering Application of Artificial Intelligence, 2018, 69, 93- 103.
doi: 10.1016/j.engappai.2017.12.005 |
15 |
YAN S Q, ZHOU J Z, ZHENG Y, et al An improved hybrid backtracking search algorithm based T-S fuzzy model and its implementation to hydroelectric generating units. Neurocomputing, 2018, 275, 2066- 2079.
doi: 10.1016/j.neucom.2017.10.036 |
16 | CHROUTA J, FARHANI J, ZAAFOURI A, et al. A methodology for modelling of Takagi-Sugeno fuzzy model based on multi-particle swarm optimization: application to gas furnace system. Proc. of the 6th International Conference on Control, Decision and Information Technologies, 2019: 23−26. |
17 |
LI R C, GUO Y Q, NGUANG S K, et al Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability. Chinese Journal of Aeronautics, 2018, 31 (6): 1206- 1214.
doi: 10.1016/j.cja.2018.04.010 |
18 |
JOHANSEN S V, BENDTSEN J D, JENSEN M R, et al Broiler weight forecasting using dynamic neural network models with input variable selection. Computers and Electronics in Agriculture, 2019, 159, 97- 109.
doi: 10.1016/j.compag.2018.12.014 |
19 |
CHANG F, HEINEMANN P H Optimizing prediction of human assessments of dairy odors using input variable selection. Computers and Electronics in Agriculture, 2018, 150, 402- 410.
doi: 10.1016/j.compag.2018.05.017 |
20 | WANG Q, FAN C H, BAI J Y, et al SO2 emission characteristic modeling based on variable selection and SVM . Thermal Power Generation, 2018, 47 (3): 68- 75. |
21 |
LOVATTI B P O, NASCIMENTO M H C, NETO A C, et al Use of random forest in the identification of important variables. Microchemical Journal, 2019, 145, 1129- 1134.
doi: 10.1016/j.microc.2018.12.028 |
22 | BANAKAR A, AZEEM M F. Input selection for TSK fuzzy model based on modified mountain clustering. Proc. of the 3rd International IEEE Conference on Intelligent Systems, 2006: 295–299. |
23 |
LIN Y H, CUNNINGHAM G A, COGGESHALL S V, et al Nonlinear system input structure identification: two stage fuzzy curves and surfaces. IEEE Trans. on System, Man, and Cybernetics—Part A: Systems and Humans, 1998, 28 (5): 678- 684.
doi: 10.1109/3468.709615 |
24 | GUSTAFSON D E, KESSEL W C. Fuzzy clustering with a fuzzy covariance matrix. Proc. of the 17th IEEE Conference on Decision Control, 1979: 761−766. |
25 |
GATH I, GEVA A B Unsupervised optimal fuzzy clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989, 11 (7): 773- 781.
doi: 10.1109/34.192473 |
26 |
TSAI S H, CHEN Y W A novel identification method for Takagi-Sugeno fuzzy model. Fuzzy Sets and Systems, 2018, 338, 117- 135.
doi: 10.1016/j.fss.2017.10.012 |
27 |
ZHU L F, WANG J S, WANG H Y A novel clustering validity function of FCM clustering algorithm. IEEE Access, 2019, 7, 152289- 152315.
doi: 10.1109/ACCESS.2019.2946599 |
28 |
TSEKOURAS G E On the use of the weighted fuzzy C-means in fuzzy modeling. Advance Engineering Software, 2005, 36 (5): 287- 300.
doi: 10.1016/j.advengsoft.2004.12.001 |
29 |
KIM E, PARK M, JI S, et al A new approach to fuzzy modeling. IEEE Trans. on Fuzzy Systems, 1997, 5 (3): 328- 337.
doi: 10.1109/91.618271 |
30 |
JIANG W, YANG T, SHOU Y H, et al Improved evidential fuzzy c-means method. Journal of Systems Engineering and Electronics, 2018, 29 (1): 187- 195.
doi: 10.21629/JSEE.2018.01.19 |
31 | LIU Z, CHEN X H, LIU J, et al Source number estimation method based on fuzzy C-means clustering. Systems Engineering and Electronics, 2019, 41 (2): 244- 247. |
32 |
LO J C, YANG C H A heuristic error-feedback learning algorithm for fuzzy modeling. IEEE Trans. on Systems, Man, and Cybernetics—Part A: Systems and Humans, 1999, 29 (6): 686- 691.
doi: 10.1109/3468.798075 |
33 |
MASOUMI M S, KHANJANI M, QADERI K Uplift capacity prediction of suction caisson in clay using a hybrid intelligence method (GMDH-HS). Applied Ocean Research, 2016, 59, 408- 416.
doi: 10.1016/j.apor.2016.07.005 |
34 | LIU F C. Fuzzy model identification of nonlinear system and its application. Beijing: National Defense Industry Press, 2006. (in Chinese) |
35 | BOX G E, JENKINS G M. Time series analysis: forecasting and control. San Fransisco: Holden-Day Inc., 1976. |
36 |
LI C S, ZHOU J Z, FU B, et al T-S fuzzy model identification with a gravitational search-based hyper-plane clustering algorithm. IEEE Trans. on Fuzzy Systems, 2012, 20 (2): 305- 317.
doi: 10.1109/TFUZZ.2011.2173693 |
37 |
LI C S, ZHOU J Z, LI Q Q, et al A new T-S fuzzy-modeling approach to identify a boiler-turbine system. Expert Systems with Applications, 2010, 37 (3): 2214- 2221.
doi: 10.1016/j.eswa.2009.07.052 |
38 | LIU F C, WANG L X, JIA X J, et al The application of linear/nonlinear active disturbance rejection switching control in variable load pneumatic loading system. Journal of Mechanical Engineering, 2018, 54 (12): 225- 232. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||