Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 575-584.doi: 10.23919/JSEE.2022.000055
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Bingren JI(), Yong WANG*(), Bin ZHAO(), Rongqing XU()
Received:
2021-03-01
Online:
2022-06-18
Published:
2022-06-24
Contact:
Yong WANG
E-mail:1455252058@qq.com;wangyong6012@hit.edu.cn;smith@riee.hit.edu.cn;xurongqing@hit.edu.cn
About author:
Supported by:
Bingren JI, Yong WANG, Bin ZHAO, Rongqing XU. Multi-static InISAR imaging for ships under sparse aperture[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 575-584.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | CHEN C C, ANDREWS H C Target-motion induced radar imaging. IEEE Trans. on Aerospace and Electronic Systems, 1980, 16 (1): 2- 14. |
2 |
ZHENG J B, SU T, ZHU W T, et al ISAR imaging of targets with complex motions based on the keystone time-chirp rate distribution. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (7): 1275- 1279.
doi: 10.1109/LGRS.2013.2291992 |
3 |
LI G, ZHANG H, WANG X Q, et al ISAR 2-D imaging of uniformly rotating targets via matching pursuit. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (2): 1838- 1846.
doi: 10.1109/TAES.2012.6178106 |
4 |
ZHENG J B, SU T, ZHANG L, et al ISAR imaging of targets with complex motion based on the chirp rate-quadratic chirp rate distribution. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (11): 7276- 7289.
doi: 10.1109/TGRS.2014.2310474 |
5 |
ZHENG J B, SU T, ZHU W T, et al Fast parameter estimation algorithm for cubic phase signal based on quantifying effects of Doppler frequency shift. Progress in Electromagnetics Research, 2013, 142, 57- 74.
doi: 10.2528/PIER13061008 |
6 |
ZHANG L, DUAN J, QIAO Z J Phase adjustment and ISAR imaging of maneuvering targets with sparse apertures. IEEE Trans. on Aerospace and Electronic System, 2014, 50 (3): 1955- 1973.
doi: 10.1109/TAES.2013.130115 |
7 |
ZENG C Z, ZHU W G, JIA X Sparse aperture ISAR imaging algorithm based on adaptive filtering framework. IET Radar, Sonar & Navigation, 2019, 13 (3): 445- 455.
doi: 10.1049/iet-rsn.2018.5420 |
8 | PRICKETT M J, CHEN C C Principles of inverse synthetic aperture radar imaging. Proc. of the Electronic Aerospace System Conference, 1980, 340- 345. |
9 |
ZHU D Y, WANG L, YU Y, et al Robust ISAR range alignment via minimizing the entropy of the average range profile. IEEE Geoscience and Remote Sensing Papers, 2009, 6 (2): 204- 208.
doi: 10.1109/LGRS.2008.2010562 |
10 |
WAHL D E, EICHEL P H, GHIGLIA D C, et al Phase gradient autofocus—a robust tool for high-resolution SAR phase correction. IEEE Trans. on Aerospace and Electronic System, 1994, 30 (3): 827- 835.
doi: 10.1109/7.303752 |
11 |
YE W, YEO T S, BAO Z Weighted least-squares estimation of phase errors for SAR/ISAR autofocus. IEEE Trans. on. Geoscience and Remote Sensing, 1999, 37 (5): 2487- 2494.
doi: 10.1109/36.789644 |
12 |
JAKOWATZ C V, WAHL D E Eigenvector method for maximum-likelihood estimation of phase errors in synthetic aperture radar imagery. Journal of the Optical Society of America, 1993, 10 (12): 2539- 2546.
doi: 10.1364/JOSAA.10.002539 |
13 |
MARTORELLA M, BERIZZI F, HAYWOOD B Contrast maximization based technique for 2-D ISAR autofocusing. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152 (4): 253- 262.
doi: 10.1049/ip-rsn:20045123 |
14 |
LARSSON E G, STOICA P, LI J Amplitude spectrum estimation for two-dimensional gapped data. IEEE Trans. on Signal Processing, 2002, 50 (6): 1343- 1353.
doi: 10.1109/TSP.2002.1003059 |
15 | BARANIUK R, STEEGHS P Compressive radar imaging. Proc. of the IEEE Radar Conference, 2007, 128- 133. |
16 |
DONOHO D L Compressed sensing. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
17 |
CANDES E J, ROMBERG J, TAO T Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory, 2006, 52 (2): 489- 509.
doi: 10.1109/TIT.2005.862083 |
18 | MORADIKIA M, SAMADI S, CETIN M Joint SAR imaging and multi-feature decomposition from 2-D under-sampled data via low-rankness plus sparsity priors. IEEE Trans. on Computational Imaging, 2018, 5 (1): 1- 16. |
19 |
QIU W, ZHOU J X, FU Q Jointly using low-rank and sparsity priors for sparse inverse synthetic aperture radar imaging. IEEE Trans. on Image Processing, 2020, 29, 100- 115.
doi: 10.1109/TIP.2019.2927458 |
20 |
LU X Y, ZHAO Y J, YANG J C An efficient method for single-channel SAR target reconstruction under severe deceptive jamming. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (2): 237- 241.
doi: 10.1109/LGRS.2019.2918838 |
21 |
LI Y C, WU R, XING M D Inverse synthetic aperture radar imaging of ship target with complex motion. IET Radar, Sonar & Navigation, 2008, 2 (6): 395- 403.
doi: 10.1049/iet-rsn:20070101 |
22 |
WANG Y, LI X L Three-dimensional interferometric ISAR imaging for the ship target under the bi-static configuration. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2016, 9 (4): 1505- 1520.
doi: 10.1109/JSTARS.2015.2513774 |
23 |
MA C Z, YEO T S, GUO Q Bistatic ISAR imaging incorporating interferometric 3-D imaging technique. IEEE Trans. on Geoscience and Remote Sensing, 2012, 50 (10): 3859- 3867.
doi: 10.1109/TGRS.2012.2186304 |
24 |
QIU W, ZHOU J X, ZHAO H Z, et al Three-dimensional sparse turntable microwave imaging based on compressive sensing. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (4): 826- 830.
doi: 10.1109/LGRS.2014.2363238 |
25 |
XU G, XING M D, XIA X G Three-dimensional geometry and motion estimations of maneuvering targets for interferometric ISAR with sparse aperture. IEEE Trans. on Image Processing, 2016, 25 (5): 2005- 2020.
doi: 10.1109/TIP.2016.2535362 |
26 | WU Y L, ZHANG S S, KANG H Q. Fast marginalized sparse Bayesian learning for 3-D interferometric ISAR image formation via super-resolution ISAR imaging. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10): 4942–4951. |
[1] | Qiuchen LIU, Yong WANG, Qingxiang ZHANG. ISAR cross-range scaling based on the MUSIC technique [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 928-938. |
[2] | Youhua Wang and Jianqiu Zhang. Robust signal recovery algorithm for structured perturbation compressive sensing [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 319-325. |
[3] | Ling Wang, Zhenxiao Cao, Ning Li, Teng Jing, and Daiyin Zhu. Optimal ship imaging for shore-based ISAR using DCF estimation [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 739-. |
[4] | Chenglan Liu, Feng He, Xunzhang Gao, Xiang Li, and Rongjun Shen. Novel reference range selection method in InISAR imaging [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 512-521. |
[5] | Yong Wang. New method of time-frequency representation for ISAR imaging of ship targets [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 502-511. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||