Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (2): 489-496.doi: 10.23919/JSEE.2022.000048
• RELIABILITY • Previous Articles
Zheng WANG(), Zhiyuan HU(), Xuanfang YANG()
Received:
2020-07-09
Accepted:
2022-02-14
Online:
2022-05-06
Published:
2022-05-06
About author:
Supported by:
Zheng WANG, Zhiyuan HU, Xuanfang YANG. Multi-agent and ant colony optimization for ship integrated power system network reconfiguration[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 489-496.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Parameters of SIPS devices"
No. | Device | Power/kW | Level | No. | Device | Power/kW | Level | No. | Device | Power/kW | Level | No. | Device | Power/kW | Level | |||
1 | G1 | 21 | 0 | 25 | M7 | 1.270 5 | 2 | 49 | G7 | 3.75 | 0 | 73 | P18 | 0.005 | 0 | |||
2 | G2 | 3.75 | 0 | 26 | I6 | 0.769 2 | 2 | 50 | G8 | 21 | 0 | 74 | I20 | 0.05 | 3 | |||
3 | G3 | 3.75 | 0 | 27 | P10 | 0.005 | 0 | 51 | P23 | 0.005 | 0 | 75 | M8 | 1.270 5 | 2 | |||
4 | G4 | 21 | 0 | 28 | I7 | 0.05 | 3 | 52 | M1 | 20 | 1 | 76 | I8 | 3.0 | 2 | |||
5 | P1 | 0.005 | 0 | 29 | M8 | 1.270 5 | 2 | 53 | M2 | 20 | 1 | 77 | P19 | 0.005 | 0 | |||
6 | M1 | 20 | 1 | 30 | I8 | 3.0 | 2 | 54 | P24 | 0.005 | 0 | 78 | I21 | 0.05 | 3 | |||
7 | M2 | 20 | 1 | 31 | P11 | 0.005 | 0 | 55 | P25 | 0.005 | 0 | 79 | M9 | 1.270 5 | 2 | |||
8 | P2 | 0.005 | 0 | 32 | I9 | 0.05 | 3 | 56 | P26 | 0.005 | 0 | 80 | I10 | 1.493 7 | 2 | |||
9 | P3 | 0.005 | 0 | 33 | M9 | 1.270 5 | 2 | 57 | P27 | 0.005 | 0 | 81 | P20 | 0.005 | 0 | |||
10 | P4 | 0.005 | 0 | 34 | I10 | 1.493 7 | 2 | 58 | P28 | 0.005 | 0 | 82 | I22 | 0.005 | 3 | |||
11 | P5 | 0.005 | 0 | 35 | P12 | 0.005 | 0 | 59 | M3 | 20 | 1 | 83 | M10 | 0.729 5 | 2 | |||
12 | P6 | 0.005 | 0 | 36 | I11 | 0.005 | 3 | 60 | M4 | 20 | 1 | 84 | I12 | 1.270 5 | 2 | |||
13 | M3 | 20 | 1 | 37 | M10 | 0.7295 | 2 | 61 | P15 | 0.005 | 0 | 85 | P21 | 0.005 | 0 | |||
14 | M4 | 20 | 1 | 38 | I12 | 1.270 5 | 2 | 62 | I17 | 0.05 | 3 | 86 | I23 | 0.05 | 3 | |||
15 | P7 | 0.005 | 0 | 39 | P13 | 0.005 | 0 | 63 | M5 | 1.270 5 | 2 | 87 | M11 | 1.270 5 | 2 | |||
16 | I1 | 0.05 | 3 | 40 | I13 | 0.05 | 3 | 64 | I2 | 1.102 4 | 2 | 88 | I14 | 1.392 | 2 | |||
17 | M5 | 1.270 5 | 2 | 41 | M11 | 1.270 5 | 2 | 65 | P15 | 0.005 | 0 | 89 | P22 | 0.005 | 0 | |||
18 | I2 | 1.102 4 | 2 | 42 | I14 | 1.392 | 2 | 66 | I18 | 0.05 | 3 | 90 | I24 | 0.005 | 3 | |||
19 | P10 | 0.005 | 0 | 43 | P14 | 0.005 | 0 | 67 | M6 | 0.897 6 | 2 | 91 | M12 | 0.769 2 | 2 | |||
20 | I3 | 0.05 | 3 | 44 | I15 | 0.005 | 3 | 68 | I4 | 1.493 7 | 2 | 92 | I16 | 1.230 8 | 2 | |||
21 | M6 | 0.897 6 | 2 | 45 | M12 | 0.7692 | 2 | 69 | P17 | 0.005 | 0 | 93 | L1 | 0.005 | 0 | |||
22 | I4 | 1.493 7 | 2 | 46 | I16 | 1.230 8 | 2 | 70 | I19 | 0.05 | 3 | 94 | L2 | 0.005 | 0 | |||
23 | P9 | 0.005 | 0 | 47 | G5 | 21 | 0 | 71 | M7 | 1.270 5 | 2 | 95 | L3 | 0.005 | 0 | |||
24 | I5 | 0.05 | 3 | 48 | G6 | 3.75 | 0 | 72 | I6 | 0.769 2 | 2 | 96 | L4 | 0.005 | 0 |
1 | JIN Z M, SAVAGHEBI M, VASQUEZ J C, et al Maritime DC microgrids: a combination of microgrid technologies and maritime onboard power system for future ships. Proc. of the 8th IEEE International Power Electronics and Motion Control Conference, 2016, 179- 184. |
2 |
ZHANG S X, CHENG H Z, WANG D, et al Distributed generation planning in active distribution network considering demand side management and network reconfiguration. Applied Energy, 2018, 228, 1921- 1936.
doi: 10.1016/j.apenergy.2018.07.054 |
3 |
HOSSAIN M R, GINN H L Real-time distributed coordination of power electronic converters in a DC shipboard distribution system. IEEE Trans. on Energy Conversion, 2017, 32 (2): 770- 778.
doi: 10.1109/TEC.2017.2685593 |
4 | ALAFNAN H, ZHANG M, YUAN W, et al Stability improvement of DC power systems in an all-electric ship using hybrid SMES/battery. IEEE Trans. on Applied Superconductivity, 2018, 28 (3): 5700306. |
5 |
LI J, ZHANG Z P, LI B Y Sensor fault detection and system reconfiguration for DC-DC boost converter. Sensors, 2018, 18 (5): 1375.
doi: 10.3390/s18051375 |
6 |
MORADI R, ALIKHANI A, JEGARKANDI M F Comparing the performance of reference trajectory management and controller reconfiguration in attitude fault tolerant control. Proc. of the MATEC Web of Conferences, 2018, 151, 04008.
doi: 10.1051/matecconf/201815104008 |
7 |
GARAU M, GHIANI E, CELLI G, et al Co-simulation of smart distribution network fault management and reconfiguration with LTE communication. Energies, 2018, 11 (6): 1332.
doi: 10.3390/en11061332 |
8 | FENG X Y, BUTLER-PURRY K L, ZOURNTOS T Real-time electric load management for DC zonal all-electric ship power systems. Electric Power Systems Research, 2018, 154, 503- 514. |
9 |
SUN R J, LIU Y T, ZHU H N, et al A network reconfiguration approach for power system restoration based on preference-based multi-objective optimization. Applied Soft Computing, 2019, 83, 105656.
doi: 10.1016/j.asoc.2019.105656 |
10 |
SULTANA N, RUFENACHT M, SKJELLUM A, et al Failure recovery for bulk synchronous applications with MPI stages. Parallel Computing, 2019, 84, 1- 14.
doi: 10.1016/j.parco.2019.02.007 |
11 |
LI W B, LI Q, GAO J J, et al Research of non-contact compensation AC voltage regulator based on fuzzy strategy. Journal of Physics: Conference Series, 2020, 1626 (1): 012070.
doi: 10.1088/1742-6596/1626/1/012070 |
12 | WANG Z, XIA L, WANG Y J Application of multi-agent and genetic algorithm in network reconfiguration of ship power system. Electronics & Electrical Engineering, 2012, 18 (9): 7- 10. |
13 | FOERSTER J, FARQUHAR G, AFOURAS T, et al. Counterfactual multi-agent policy gradients. Proc. of the AAAI Conference on Artificial Intelligence, arXiv preprint arXiv:1765.0892601, 2018 |
14 |
ZHOU T, LIU Q L, WANG D, et al Distributed non-fragile containment control of nonlinear multi-agent systems with time-varying delays. International Journal of Systems Science, 2020, 1- 16.
doi: 10.1080/00207721.2020.1849860 |
15 |
ALI M S, AGALYA R, ORMAN Z, et al Leader-following consensus of non-linear multi-agent systems with interval time-varying delay via impulsive control. Neural Processing Letters, 2021, 53 (1): 69- 83.
doi: 10.1007/s11063-020-10384-8 |
16 | HOUSSEYNI W, MOSBAHI O, KHALGUI M, et al Multiagent architecture for distributed adaptive scheduling of reconfigurable real-time tasks with energy harvesting constraints. IEEE Access, 2017, 6, 2068- 2084. |
17 | LOWE R, WU Y I, TAMAR A, et al Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in Neural Information Processing Systems, 2017, 30 (1): 6379- 6390. |
18 | PANASETSKY D, SIDOROY D, LI Y, et al Centralized emergency control for multi-terminal VSC-based shipboard power systems. International Journal of Electrical Power & Energy Systems, 2019, 104, 205- 214. |
19 | LI C J, LIU G P Data-driven consensus for non-linear networked multi-agent systems with switching topology and time-varying delays. IET Control Theory & Applications, 2018, 12 (12): 1773- 1779. |
20 |
LI C J, LIU G P Consensus for heterogeneous networked multi-agent systems with switching topology and time-varying delays. Journal of the Franklin Institute, 2018, 355 (10): 4198- 4217.
doi: 10.1016/j.jfranklin.2018.04.003 |
21 |
CHNITER H, LI Y, KHALGUI M, et al Multi-agent adaptive architecture for flexible distributed real-time systems. IEEE Access, 2018, 6, 23152- 23171.
doi: 10.1109/ACCESS.2018.2825023 |
22 | BONABEAU E, DORIGO M, MARCO D, et al. Swarm intelligence: from natural to artificial systems. Oxford: Oxford University Press, 1999. |
23 |
DORIGO M, GAMBARDELLA L M Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. on Evolutionary Computation, 1997, 1 (1): 53- 66.
doi: 10.1109/4235.585892 |
24 |
DI CARO G, DORIGO M, GAMBARDELLA L M Ant algorithms for discrete optimization. Artificial Life, 1999, 5 (2): 137- 172.
doi: 10.1162/106454699568728 |
25 | ARIYASINGHA I, FERNANDO T G I Performance analysis of the multi-objective ant colony optimization algorithms for the traveling salesman problem. Swarm & Evolutionary Computation, 2015, 23, 11- 26. |
26 | KUZNETSOV A V, SELVESIUK N I, PLATOSHIN G A, et al Application of cellular automatons and ant algorithms in avionics. Journal of Physics Conference Series, 2018, 973 (1): 012062. |
27 | LIU H D, SUN Y, ZHANG L Y Information reconstruction strategy for a ship power distribution system. Proc. of the Data Processing Techniques and Applications for Cyber-Physical Systems, 2020, 479- 487. |
28 | PAPERNOT N, MCDANIEL P. Deep k-nearest neighbors: towards confident, interpretable and robust deep learning. arXiv preprint arXiv: 1803.04765, 2018. |
29 |
GOU J P, MA H X, OU W H, et al A generalized mean distance-based k-nearest neighbor classifier. Expert Systems with Applications, 2019, 115, 356- 372.
doi: 10.1016/j.eswa.2018.08.021 |
30 | YANG J Research on optimized reconfiguration of distributed distribution network based on ant colony optimization algorithm. Proc. of the International Conference on Computer Engineering and Application, 2020, 20- 23. |
31 |
DORIGO M, BIRATTARI M, STUTZLE T Ant colony optimization. IEEE Computational Intelligence Magazine, 2006, 1 (4): 28- 39.
doi: 10.1109/MCI.2006.329691 |
32 | SHEN X L, SANG J S, SUN Y B, et al Application of improved ant colony algorithm in distribution network patrol route planning. Proc. of the 7th IEEE International Conference on Software Engineering and Service Science, 2016, 560- 563. |
33 | TIRKOLAEE E B, ALINAGHIAN M, HOSSEINABADI A, et al An improved ant colony optimization for the multi-trip capacitated arc routing problem. Computers & Electrical Engineering, 2019, 77, 457- 470. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||