Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (2): 393-405.doi: 10.23919/JSEE.2022.000041
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Tianle YAO1,*(), Weili WANG1(), Run MIAO1(), Jun DONG2(), Xuefei YAN3()
Received:
2020-12-21
Accepted:
2022-03-17
Online:
2022-04-18
Published:
2022-05-06
Contact:
Tianle YAO
E-mail:18931970836@163.com;w.l.wang@tom.com;miaorun1769@163.com;94180853@qq.com;jasonyan9023@163.com
About author:
YAO Tianle was born in 1994. He received his M.S. degree from Amy Engineering University, China. He is currently a doctoral candidate in Naval University of Engineering. His research interests include weapon system of systems and damage effectiveness assessment.E-mail: 18931970836@163.comTianle YAO, Weili WANG, Run MIAO, Jun DONG, Xuefei YAN. Damage effectiveness assessment method for anti-ship missiles based on double hierarchy linguistic term sets and evidence theory[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 393-405.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Assessment linguistic results assessed by four experts"
Criterion | Expert 1 | Expert 2 | Expert 3 | Expert 4 | |||||||||||
A1 | A2 | A3 | A1 | A2 | A3 | A1 | A2 | A3 | A1 | A2 | A3 | ||||
C11 | |||||||||||||||
C12 | |||||||||||||||
C13 | |||||||||||||||
C14 | |||||||||||||||
C15 | |||||||||||||||
C16 | |||||||||||||||
C17 | |||||||||||||||
C18 | |||||||||||||||
C19 | |||||||||||||||
C21 | |||||||||||||||
C22 | |||||||||||||||
C23 | |||||||||||||||
C24 | |||||||||||||||
C25 | |||||||||||||||
C26 | |||||||||||||||
C27 |
Table 2
Belief degree of the linguistic information of all criteria"
Criterion | Expert 1 | Expert 2 | Expert 3 | Expert 4 | |||||||||||
A1 | A2 | A3 | A1 | A2 | A3 | A1 | A2 | A3 | A1 | A2 | A3 | ||||
C11 | 0.2494 | 0.2533 | 0.2494 | 0.2506 | 0.2497 | 0.2506 | 0.2506 | 0.2437 | 0.2506 | 0.2494 | 0.2533 | 0.2494 | |||
C12 | 0.2503 | 0.2515 | 0.2524 | 0.2503 | 0.2515 | 0.2500 | 0.2491 | 0.2455 | 0.2452 | 0.2503 | 0.2515 | 0.2524 | |||
C13 | 0.2494 | 0.2509 | 0.2494 | 0.2506 | 0.2485 | 0.2506 | 0.2506 | 0.2497 | 0.2506 | 0.2494 | 0.2509 | 0.2494 | |||
C14 | 0.2497 | 0.2521 | 0.2521 | 0.2485 | 0.2521 | 0.2509 | 0.2521 | 0.2437 | 0.2449 | 0.2497 | 0.2521 | 0.2521 | |||
C15 | 0.2509 | 0.2512 | 0.2518 | 0.2449 | 0.2537 | 0.2494 | 0.2533 | 0.2439 | 0.2470 | 0.2509 | 0.2512 | 0.2518 | |||
C16 | 0.2485 | 0.2470 | 0.2524 | 0.2521 | 0.2530 | 0.2524 | 0.2509 | 0.2530 | 0.2428 | 0.2485 | 0.2470 | 0.2524 | |||
C17 | 0.2518 | 0.2500 | 0.2518 | 0.2518 | 0.2500 | 0.2506 | 0.2446 | 0.2500 | 0.2458 | 0.2518 | 0.2500 | 0.2518 | |||
C18 | 0.2476 | 0.2497 | 0.2497 | 0.2524 | 0.2473 | 0.2497 | 0.2524 | 0.2533 | 0.2509 | 0.2476 | 0.2497 | 0.2497 | |||
C19 | 0.2488 | 0.2509 | 0.2494 | 0.2488 | 0.2485 | 0.2506 | 0.2536 | 0.2497 | 0.2506 | 0.2488 | 0.2509 | 0.2494 | |||
C21 | 0.2530 | 0.2515 | 0.2503 | 0.2494 | 0.2503 | 0.2467 | 0.2446 | 0.2467 | 0.2527 | 0.2530 | 0.2515 | 0.2503 | |||
C22 | 0.2524 | 0.2515 | 0.2488 | 0.2549 | 0.2503 | 0.2512 | 0.2402 | 0.2467 | 0.2512 | 0.2524 | 0.2515 | 0.2488 | |||
C23 | 0.2527 | 0.2491 | 0.2494 | 0.2467 | 0.2515 | 0.2506 | 0.2479 | 0.2503 | 0.2506 | 0.2527 | 0.2491 | 0.2494 | |||
C24 | 0.2503 | 0.2485 | 0.2509 | 0.2515 | 0.2509 | 0.2497 | 0.2479 | 0.2521 | 0.2485 | 0.2503 | 0.2485 | 0.2509 | |||
C25 | 0.2524 | 0.2464 | 0.2503 | 0.2476 | 0.2536 | 0.2503 | 0.2476 | 0.2536 | 0.2491 | 0.2524 | 0.2464 | 0.2503 | |||
C26 | 0.2515 | 0.2497 | 0.2512 | 0.2515 | 0.2509 | 0.2512 | 0.2455 | 0.2497 | 0.2464 | 0.2515 | 0.2497 | 0.2512 | |||
C27 | 0.2518 | 0.2497 | 0.2515 | 0.2530 | 0.2485 | 0.2467 | 0.2433 | 0.2521 | 0.2503 | 0.2518 | 0.2497 | 0.2515 |
Table 3
Weight of all criteria in the second and the third layers"
Criterion in the second layer | Criterion in the third layer |
Warhead damage capability (0.6) | Missile hit position (0.1) |
Hole size (0.05) | |
Number of penetrating cabins (0.05) | |
Range of shock wave(0.07) | |
Shock wave overpressure (0.07) | |
Pressure duration (0.25) | |
Number of fragments (0.07) | |
Quality of fragment (0.06) | |
Initial velocity of fragments (0.1) | |
Damage resistance of ship (0.4) | Geometry of the ship (0.06) |
Hull bulkhead structure(0.13) | |
Hull deck structure (0.1) | |
Special structure (0.05) | |
Main material of the ship (0.28) | |
Ship stiffener (0.22) | |
Welding materials for ship (0.16) |
1 | XU Y, WU Y L, HUANG C, et al Combat effectiveness assessment of buried air-to-air missile based on improved two-step judgment method. Systems Engineering and Electronics, 2019, 41 (12): 2763- 2771. |
2 | TANG X, YANG J J, YAN C, et al HPM weapon electronic damage assessment method. Systems Engineering and Electronics, 2016, 38 (10): 2317- 2323. |
3 | ZHAO X X, HAN X G, WU H, et al Application research on the assessment of the damage effectiveness of guided anti-explosive projectile. Transactions of Beijing Institute of Technology, 2019, 39 (6): 551- 557. |
4 | WANG Z Q, WEI J F, WANG S S, et al Research on damage effectiveness assessment of a dual-mode warhead. Acta Armamentarii, 2016, 37 (S1): 24- 29. |
5 | XIONG Z Y, WANG X Y, SONG M Y, et al Simulation research on the damage effectiveness of torpedo to ship target. Acta Armamentarii, 2016, 37 (S1): 76- 79. |
6 | GUO J F, YIN Z H, CUI N G Simulation-based method for evaluating the operational effectiveness of air-to-surface missile weapon systems. Control and Decision, 2009, 24 (10): 1576- 1579. |
7 | LI S L Effectiveness evaluation of weapon equipment system oriented to causality analysis. Modern Information Technology, 2020, 4 (5): 12- 15. |
8 | PENG S X, WANG H T, ZOU Q Operational effectiveness evaluation model of submarine-to-air missile weapon system. Systems Engineering-Theory & Practice, 2015, 35 (1): 267- 272. |
9 | LIU Y, ZHAO C N, WANG X S, et al A method for evaluating the combat effectiveness of anti-radiation weapons. Acta Armamentarii, 2011, 32 (3): 321- 326. |
10 | LI W X, HUANG C Q, WU W C, et al Damage assessment of air-to-ground precision guided weapons to ground attack target. Systems Engineering-Theory & Practice, 2012, 32 (1): 211- 218. |
11 |
RODRIGUEZ R M, MARTINE L, HERRERA F Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. on Fuzzy Systems, 2012, 20 (1): 109- 119.
doi: 10.1109/TFUZZ.2011.2170076 |
12 | LIAO H C, WU X L, LIANG X D. A new hesitant fuzzy linguistic ORESTE method for hybrid multicriteria decision making. IEEE Trans. on Fuzzy Systems 2018, 26(6): 3793–3807. |
13 |
GOU X J, XU Z S Double hierarchy linguistic term set and its extensions: the state-of-the-art survey. International Journal of Intelligent Systems, 2021, 36 (2): 832- 865.
doi: 10.1002/int.22323 |
14 | ZHANG W Y, YANG F X, FAN H Y, et al Evaluation of haze management based on the double hierarchy hesitant fuzzy linguistic TOPSIS method. Statistics and Decision, 2019, 35 (10): 36- 41. |
15 | XUE Y, ZHANG W Y, YANG F X, et al Evaluation of China’s military-civilian dual-use technology and product promotion strategy capability based on double hierarchy hesitant fuzzy language MULTIMOORA model analysis. Management World, 2018, (11): 192- 193. |
16 |
DEMPSTER A P Upper and lower probabilities induced by a multi-walued mapping. Annals of Mathematical Statistics, 1967, 38 (2): 325- 339.
doi: 10.1214/aoms/1177698950 |
17 | LIU P D, ZHANG X H Approach to multi-attributes decision making with intuitionistic linguistic information based on Dempster-Shafer evidence theory. IEEE Access, 2018, 6, 52969- 52981. |
18 |
YANG J B, WANG Y M, XU D L, et al The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. European Journal of Operational Research, 2006, 171 (1): 309- 343.
doi: 10.1016/j.ejor.2004.09.017 |
19 | FEI X T, ZHOU J Y A D-S evidence weight calculation method for dealing with conflict evidence. Computer Engineering, 2016, 42 (2): 142- 145. |
20 | HUANG D R, CHAI Y C, ZHAO L, et al Road network traffic jam state identification method considering multi-source uncertain information. Acta Automatica Sinica, 2018, 44 (3): 533- 544. |
21 | ZHANG X X, WANG Y M A hybrid multiple attribute decision making method based on interval reliability structure. Control and Decision, 2019, 34 (1): 180- 188. |
22 | WANG Y M, YANG J B, XU D L Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 2004, 174 (3): 1885- 1913. |
23 |
YANG J B Nonlinear Information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty. IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and Humans, 2002, 32 (3): 376- 393.
doi: 10.1109/TSMCA.2002.802809 |
24 | LEAN Y, KIN K L A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support. Decision Support Systems, 2010, 51 (2): 307- 315. |
[1] | Ya WANG, Mei CAI, Xinglian JIAN. Consensus model of social network group decision-making based on trust relationship among experts and expert reliability [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1576-1588. |
[2] | Ziwei ZHANG, Qisheng GUO, Zhiming DONG, Hongxiang LIU, Ang GAO, Pengcheng QI. Operational effectiveness evaluation based on the reduced conjunctive belief rule base [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1161-1172. |
[3] | Gang LIU, Zhibiao AN, Songyang LAO, Wu LI. Firepower distribution method of anti-ship missile based on coupled path planning [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 1010-1024. |
[4] | Xiao LUO, Weimin LI, Xuanzi WANG, Zhenchong ZHAO. Fuzzy interval linguistic sets with applications in multi-attribute group decision making [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1237-1250. |
[5] | Zhenzhen MA, Kumaraswamy PONNAMBALAM, Jianjun ZHU, Shitao ZHANG. Dynamic hesitant fuzzy linguistic group decision-making from a reliability perspective [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1009-1021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||