Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (2): 345-353.doi: 10.23919/JSEE.2022.000036
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Jianbin SUN(), Jichao LI*(), Yaqian YOU(), Jiang JIANG(), Bingfeng Ge()
Received:
2020-11-11
Accepted:
2022-03-01
Online:
2022-05-06
Published:
2022-05-06
Contact:
Jichao LI
E-mail:sunjianbin@nudt.edu.cn;ljc@hotmail.com;youyaqian13@nudt.edu.cn;jiangjiangnudt@nudt.edu.cn;bingfengge@ nudt.edu.cn
About author:
Supported by:
Jianbin SUN, Jichao LI, Yaqian YOU, Jiang JIANG, Bingfeng Ge. Combat network link prediction based on embedding learning[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 345-353.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Link prediction performance for different methods"
Method | Evaluation metric | |||
AUC | Recall | Precision | ||
Proposed method | NECLP-node2vec | 0.754 ± 0.010 | 0.535 ± 0.019 | 0.007 ± 0.000 |
NECLP-DeepWalk | 0.750 ± 0.011 | 0.518 ± 0.016 | 0.006 ± 0.000 | |
Baseline method | CN | 0.631 ± 0.028 | 0.389 ± 0.042 | 0.005 ± 0.000 |
JAC | 0.616 ± 0.023 | 0.312 ± 0.032 | 0.004 ± 0.000 | |
AA | 0.659 ± 0.028 | 0.387 ± 0.042 | 0.005 ± 0.000 | |
PA | 0.518 ± 0.043 | 0.259 ± 0.052 | 0.004 ± 0.000 | |
RA | 0.672 ± 0.026 | 0.439 ± 0.037 | 0.006 ± 0.000 | |
WIC | 0.631 ± 0.028 | 0.389 ± 0.042 | 0.005 ± 0.000 |
1 | CARES J R. An information age combat model. Proc. of the 9th International Command and Control Research and Technology Symposium on the Power of Information Age Concepts and Technologies, 2004. |
2 |
LI J C, GE B F, ZHAO D L, et al Meta-path-based weapon-target recommendation in heterogeneous combat network. IEEE Systems Journal, 2019, 13 (4): 4433- 4441.
doi: 10.1109/JSYST.2018.2890090 |
3 |
WANG X H, ZHANG Y, WANG L Z, et al Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory. Chinese Journal of Aeronautics, 2020, 33 (1): 352- 364.
doi: 10.1016/j.cja.2019.04.025 |
4 | SUN J B, GE B F, LI J C, et al Operation network modeling with degenerate causal strengths for missile defense systems. IEEE Systems Journal, 2016, 12 (1): 274- 284. |
5 | QIN M S, ZHAO D L, YANG K W Effectiveness evaluation of anti-submarine activities based on combat network. Systems Engineering and Electronics, 2018, 40 (7): 1513- 1520. |
6 | LICHTMAN M, VONDAL M T, CLANCY T C, et al Antifragile communications. IEEE Systems Journal, 2016, 12 (1): 659- 670. |
7 | FANG G X, TAN Y J, ZHANG M, et al Evaluation of relative contribution rate of missile weapon system-of-systems based on combat ring. Systems Engineering and Electronics, 2020, 42 (8): 1734- 1739. |
8 | CARES J R, DICKMANN J Q. Operations research for unmanned systems. Chichester: Wiley, 2016. |
9 |
THOMAS A, TURNER T, SODERLUND S Net-centric adapter for legacy systems. IEEE Systems Journal, 2009, 3 (3): 336- 342.
doi: 10.1109/JSYST.2009.2025813 |
10 |
WANG Y M, CHEN S, PAN C S, et al Measure of invulnerability for command and control network based on mission link. Information Sciences, 2018, 426, 148- 159.
doi: 10.1016/j.ins.2017.10.035 |
11 |
LYV L Y, ZHOU T Link prediction in complex networks: a survey. Physica A: Statistical Mechanics and its Applications, 2011, 390 (6): 1150- 1170.
doi: 10.1016/j.physa.2010.11.027 |
12 |
LÜ L Y, PAN L M, ZHOU T, et al Toward link predictability of complex networks. Proceedings of the National Academy of Sciences, 2015, 112 (8): 2325- 2330.
doi: 10.1073/pnas.1424644112 |
13 |
AGHABOZORGI F, KHAYYAMBASHI M R A new similarity measure for link prediction based on local structures in social networks. Physica A: Statistical Mechanics and its Applications, 2018, 501, 12- 23.
doi: 10.1016/j.physa.2018.02.010 |
14 |
SHERKAT E, RAHGOZAR M, ASADPOUR M Structural link prediction based on ant colony approach in social networks. Physica A:Statistical Mechanics and its Applications, 2015, 419, 80- 94.
doi: 10.1016/j.physa.2014.10.011 |
15 | GE B F, LI J C, ZHAO D L, et al Meta-path based link prediction approach for weapon system-of-systems combat networks. Systems Engineering and Electronics, 2019, 41 (5): 1028- 1033. |
16 |
LIBEN-NOWELL D, KLEINBERG J The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007, 58 (7): 1019- 1031.
doi: 10.1002/asi.20591 |
17 | AL HASAN M, CHAOJI V, SALEM S, et al. Link prediction using supervised learning. Proc. of the Workshop on Link Analysis, Counter-Terrorism and Security, 2006, 30: 798–805. |
18 | BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks. Proc. of the 4th ACM International Conference on Web Search and Data Mining, 2011: 635–644. |
19 | WANG P, XU B W, WU Y R, et al Link prediction in social networks: the state-of-the-art. Science China: Information Sciences, 2015, 58 (1): 1- 38. |
20 |
GETOOR L, DIEHL C P Link mining: a survey. ACM SIGKDD Explorations Newsletter, 2005, 7 (2): 3- 12.
doi: 10.1145/1117454.1117456 |
21 | MENON A K, ELKAN C. Link prediction via matrix factorization. Proc. of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2011: 437-452. |
22 |
VALLES-CATALA T, MASSUCCI F A, GUIMERA R, et al Multilayer stochastic block models reveal the multilayer structure of complex networks. Physical Review X, 2016, 6 (1): 011036.
doi: 10.1103/PhysRevX.6.011036 |
23 | ZHANG J. Social network fusion and mining: a survey. arXiv preprint, arXiv: 1804.09874, 2018. |
24 | DEKKER A Applying social network analysis concepts to military C4ISR architectures. Connections, 2002, 24 (3): 93- 103. |
25 | DELLER S, RABADI G, TOLK A, et al Organizing for improved effectiveness in networked operations. Military Operations Research, 2012, 17 (1): 5- 16. |
26 |
LEE Y, LEE T Network-based metric for measuring combat effectiveness. Defence Science Journal, 2014, 64 (2): 115- 122.
doi: 10.14429/dsj.64.5534 |
27 |
FAN C J, LIU Z, LU X, et al An efficient link prediction index for complex military organization. Physica A: Statistical Mechanics and its Applications, 2017, 469, 572- 587.
doi: 10.1016/j.physa.2016.11.097 |
28 | SHI C, LI Y T, ZHANG J W, et al A survey of heterogeneous information network analysis. IEEE Trans. on Knowledge and Data Engineering, 2016, 29 (1): 17- 37. |
29 | QIU J Z, DONG Y X, MA H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. Proc. of the 11th ACM International Conference on Web Search and Data Mining, 2018: 459–467. |
30 | DONG Y X, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks. Proc. of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 135–144. |
31 |
GOYAL P, FERRARA E Graph embedding techniques, applications, and performance: a survey. Knowledge-Based Systems, 2018, 151, 78- 94.
doi: 10.1016/j.knosys.2018.03.022 |
32 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations. Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701–710. |
33 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks. Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 855–864. |
34 | TANG J, QU M, WANG M Z, et al. Line: large-scale information network embedding. Proc. of the 24th International Conference on World Wide Web, 2015: 1067-1077. |
35 | CUI P, WANG X, PEI J, et al A survey on network embedding. IEEE Trans. on Knowledge and Data Engineering, 2018, 31 (5): 833- 852. |
36 | FU G J, YUAN B, DUAN Q Q, et al. Representation learning for heterogeneous information networks via embedding events. Proc. of the International Conference on Neural Information Processing, 2019: 327–339. |
37 | GOLDBERG Y, LEVY O. word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint, arXiv: 1402.3722, 2014. |
38 |
LECUN Y, BENGIO Y, HINTON G Deep learning. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
39 | AL HASAN M, ZAKI M J. A survey of link prediction in social networks. AGGARWAL C, ed. Social network data analytics. Boston:Springer 2011: 243–275. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||