Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (2): 294-304.doi: 10.23919/JSEE.2022.000030
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Yang LI1,2(), Bitao JIANG1,2,*(), Xiaobin LI2(), Jing TIAN2(), Xiaorui SONG2()
Received:
2020-09-30
Accepted:
2021-11-24
Online:
2022-05-06
Published:
2022-05-06
Contact:
Bitao JIANG
E-mail:yangli.cs@outlook.com;bitao_jiang@163.com;lixb14@tsinghua.org.cn;jingtian@nudt.edu.cn;songxr@buaa.edu.cn
About author:
Supported by:
Yang LI, Bitao JIANG, Xiaobin LI, Jing TIAN, Xiaorui SONG. Unsupervised hyperspectral unmixing based on robust nonnegative dictionary learning[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 294-304.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Quantitative indexes of different unsupervised unmixing algorithms on synthetic data (without outliers)"
SNR/dB | Noise type | Index | RCoNMF | GDME | EEORDL | uDAS | RNDLSU |
30 | Correlated | SAD/(°) | 2.281 | 0.626 6 | 0.439 6 | 0.605 9 | 0.362 8 |
AAD | 7.218 | 8.677 | 4.152 | 5.299 | 3.678 | ||
SRE/dB | 14.97 | 14.71 | 22.62 | 19.49 | 22.92 | ||
White | SAD/(°) | 2.317 | 0.668 0 | 0.6314 | 0.5913 | 0.418 7 | |
AAD | 7.138 | 8.696 | 4.329 | 5.283 | 3.905 | ||
SRE/dB | 15.01 | 14.73 | 20.97 | 20.11 | 22.61 | ||
25 | Correlated | SAD/(°) | 2.916 | 0.794 6 | 0.611 3 | 1.252 | 0.467 4 |
AAD | 10.87 | 9.349 | 7.267 | 10.42 | 5.545 | ||
SRE/dB | 12.53 | 14.28 | 17.96 | 13.66 | 19.58 | ||
White | SAD/(°) | 2.606 | 0.784 4 | 0.943 9 | 1.130 | 0.652 1 | |
AAD | 10.80 | 9.244 | 8.032 | 9.917 | 6.282 | ||
SRE/dB | 12.70 | 14.42 | 17.04 | 14.42 | 18.58 | ||
20 | Correlated | SAD/(°) | 2.977 | 1.026 | 0.6810 | 2.362 | 0.603 8 |
AAD | 17.60 | 10.85 | 11.31 | 16.66 | 7.891 | ||
SRE/dB | 9.499 | 13.39 | 14.10 | 9.972 | 16.53 | ||
White | SAD/(°) | 2.991 | 1.043 | 1.721 | 2.272 | 0.775 7 | |
AAD | 16.92 | 10.76 | 11.03 | 16.45 | 7.987 | ||
SRE/dB | 9.912 | 13.49 | 12.60 | 10.11 | 13.98 |
Table 2
Quantitative indexes of different unsupervised unmixing algorithms on synthetic data (with five outliers)"
SNR/dB | Noise type | Index | RCoNMF | GDME | EEORDL | uDAS | RNDLSU |
30 | Correlated | SAD/(°) | 5.198 | 3.255 | 2.035 | 2.309 | 1.887 |
AAD | 9.283 | 9.614 | 7.890 | 8.138 | 7.138 | ||
SRE/dB | 7.192 | 3.994 | 15.35 | 15.42 | 18.99 | ||
White | SAD/(°) | 5.331 | 3.015 | 2.235 | 2.490 | 2.176 | |
AAD | 9.617 | 9.927 | 8.361 | 7.111 | 7.980 | ||
SRE/dB | 7.163 | 5.423 | 15.12 | 15.28 | 16.81 | ||
25 | Correlated | SAD/(°) | 6.023 2 | 2.982 | 3.035 | 3.119 | 1.898 |
AAD | 12.28 | 10.27 | 9.724 | 10.45 | 8.984 | ||
SRE/dB | 11.36 | 5.388 | 13.73 | 12.76 | 14.99 | ||
White | SAD/(°) | 6.083 | 3.007 | 2.578 | 3.132 | 1.956 | |
AAD | 12.36 | 10.17 | 9.623 | 10.59 | 8.778 | ||
SRE/dB | 11.29 | 5.388 | 13.20 | 12.83 | 15.79 | ||
20 | Correlated | SAD/(°) | 7.284 | 3.620 | 3.098 | 8.881 | 2.315 |
AAD | 18.03 | 12.57 | 11.23 | 18.73 | 10.82 | ||
SRE/dB | 9.199 | 4.128 | 12.41 | 9.353 | 13.22 | ||
White | SAD/(°) | 7.027 | 2.938 | 2.908 | 5.336 | 2.332 | |
AAD | 17.58 | 12.59 | 11.78 | 16.52 | 10.28 | ||
SRE/dB | 9.445 | 6.826 | 11.89 | 9.680 | 13.25 |
Table 4
SAD values of different unmixing methods with the urban data set"
Endmember | RCoNMF | GDME | EEORDL | uDAS | RNDLSU |
Asphalt | 0.245 0 | 0.123 6 | 0.105 5 | 0.219 2 | 0.080 4 |
Grass | 0.620 6 | 0.561 0 | 0.125 8 | 0.336 4 | 0.045 2 |
Tree | 0.358 7 | 0.160 8 | 0.054 1 | 0.172 0 | 0.052 4 |
Roof | 0.164 2 | 0.042 2 | 0.107 5 | 0.282 5 | 0.049 1 |
Mean | 0.347 1 | 0.221 9 | 0.098 2 | 0.252 5 | 0.056 8 |
1 |
XU X, SHI Z W, PAN B L0-based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation . ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141, 46- 58.
doi: 10.1016/j.isprsjprs.2018.04.008 |
2 |
LIU Y, GUO Y, LI F, et al Sparse dictionary learning for blind hyperspectral unmixing. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (4): 578- 582.
doi: 10.1109/LGRS.2018.2878036 |
3 |
ZHONG Y F, WANG X Y, XU Y, et al Mini-UAV-borne hyperspectral remote sensing: from observation and processing to applications. IEEE Geoscience and Remote Sensing Magazine, 2018, 6 (4): 46- 62.
doi: 10.1109/MGRS.2018.2867592 |
4 | PAN B, SHI Z W, XU X, et al Coinnet: copy initialization network for multispectral imagery semantic segmentation. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (5): 816- 820. |
5 |
TU B, LI N Y, FANG L Y, et al Hyperspectral image classification with a class-dependent spatial-spectral mixed metric. Pattern Recognition Letters, 2019, 123, 16- 22.
doi: 10.1016/j.patrec.2019.02.025 |
6 | MURPHY J M, JAMES M, MAGGION I, et al Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57 (3): 1829- 1845. |
7 | LI A L, QIN A Y, SHANG Z W, et al Spectral-spatial sparse subspace clustering based on three-dimensional edge-preserving filtering for hyperspectral image. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33 (3): 1955003. |
8 | ZOU Z X, SHI Z W Hierarchical suppression method for hyperspectral target detection. IEEE Trans. on Geoscience & Remote Sensing, 2015, 54 (1): 330- 342. |
9 |
ZHU D H, DU B, ZHANG L P Target dictionary construction-based sparse representation hyperspectral target detection methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (4): 1254- 1264.
doi: 10.1109/JSTARS.2019.2902430 |
10 | XIE W Y, SHI Y Z, LI Y S, et al High-quality spectral-spatial reconstruction using saliency detection and deep feature enhancement. Pattern Recognition, 2019, (88): 139- 152. |
11 |
JIAO C Z, CHEN C, MCGARVEY R G, et al Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 235- 250.
doi: 10.1016/j.isprsjprs.2018.08.012 |
12 |
WU C, DU B, ZHANG L P Hyperspectral anomalous change detection based on joint sparse representation. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 137- 150.
doi: 10.1016/j.isprsjprs.2018.09.005 |
13 | LIU S C, BRUZZONE L, BOVOLO F, et al Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images. IEEE Trans. on Geoscience & Remote Sensing, 2016, 54 (5): 2733- 48. |
14 | NASCIMENTO J M B, DIAS J M B Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. on Geoscience & Remote Sensing, 2005, 43, 898- 910. |
15 | MIAO L D, QI H R Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. on Geoscience & Remote Sensing, 2007, 45 (3): 765- 77. |
16 | LI J, BIOUCAS-DIAS J M, PLAZA A, et al Robust collabo-rative nonnegative matrix factorization for hyperspectral unmixing (R-CoNMF). IEEE Trans. on Geoscience & Remote Sensing, 2016, 54 (10): 6076- 6090. |
17 |
MIAO L D, QI H R, ZU H A maximum entropy approach to unsupervised mixed-pixel decomposition. IEEE Trans. on Image Processing, 2007, 16 (4): 1008- 1021.
doi: 10.1109/TIP.2006.891350 |
18 |
QI L, LI J, GAO X B, et al A novel joint dictionary framework for sparse hyperspectral unmixing incorporating spectral library. Neurocomputing, 2019, 356, 97- 106.
doi: 10.1016/j.neucom.2019.04.053 |
19 |
DRUMETZ L, MEYER T R, CHANUSSOT J, et al Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms. IEEE Trans. on Image Processing, 2019, 28 (7): 3435- 3450.
doi: 10.1109/TIP.2019.2897254 |
20 |
YAO J, MENG D Y, ZHAO Q, et al Nonconvex-sparsity and nonlocal-smoothness based blind hyperspectral unmixing. IEEE Trans. on Image Processing, 2019, 28 (6): 2991- 3006.
doi: 10.1109/TIP.2019.2893068 |
21 |
ZHANG X R, SUN Y J, ZHANG J Y, et al Hyperspectral unmixing via deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1755- 1759.
doi: 10.1109/LGRS.2018.2857804 |
22 | SU Y C, LI J, PLAZA A, et al DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57 (7): 4309- 4321. |
23 | SONG X R, WU L D, HAO H X Blind hyperspectral sparse unmixing based on online dictionary learning. Proc. of the International Society for Optics and Photonics-Image and Signal Processing for Remote Sensing XXIV, 2018, 107890K. |
24 | SONG X R, WU L D. A novel hyperspectral endmember extraction algorithm based on online robust dictionary learning, Remote Sensing, 2019, 11: 1792. |
25 | QU Y, QI H R uDAS: an untied denoising autoencoder with sparsity for spectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, 57, 1698- 1712. |
26 | PAN Q H, KONG D G, DING C, et al Robust non-negative dictionary learning. Proc. of the 28th AAAI Conference on Artificial Intelligence, 2014, 2027- 2032. |
27 | IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2012, 50 (11): 4484- 4502. |
28 | BIOUCAS-DIAS J M, NASCIMENTO J M P Hyperspectral subspace identification. IEEE Trans. on Geoscience & Remote Sensing, 2008, 46 (8): 2435- 2445. |
29 | SU Y C, LI J, ANTONIO P, et al DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans. on Geoscience & Remote Sensing, 2019, (7): 1- 13. |
30 |
WANG Y, PAN C H, XIANG S M, et al Robust hyperspectral unmixing with correntropy-based metric. IEEE Trans. on Image Processing, 2015, 24 (11): 4027- 4040.
doi: 10.1109/TIP.2015.2456508 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||