Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (2): 279-293.doi: 10.23919/JSEE.2022.000029
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Chaoxuan QIN1,2(), Xiaohui GU1,*()
Received:
2020-09-16
Accepted:
2022-02-22
Online:
2022-05-06
Published:
2022-05-06
Contact:
Xiaohui GU
E-mail:qinchaoxuan1991@163.com;gxiaohui@njust.edu.cn
About author:
Supported by:
Chaoxuan QIN, Xiaohui GU. A single image dehazing method based on decomposition strategy[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 279-293.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Quantitative comparisions of various algorithms"
Algorithm | PSNR | SSIM | Brisque | Entropy | Running time/s |
MSCWA | 17.41 | 0.8112 | 22.53 | 6.93 | 1.73 |
DFIN | 19.32 | 0.9052 | 10.12 | 7.07 | 3.11 |
AME | 20.18 | 0.9034 | 17.5 | 7.12 | 2.14 |
SBTME | 23.21 | 0.901 | 10.98 | 7.53 | 4.30 |
LPPF | 20.12 | 0.8918 | 19.2 | 7.41 | 1.17 |
AEAC | 20.86 | 0.8945 | 15.3 | 7.26 | 1.35 |
ARNCB | 20.52 | 0.8237 | 15.8 | 7.17 | 0.91 |
LBBF | 22.23 | 0.9009 | 10.87 | 7.49 | 1.86 |
ICAP | 20.17 | 0.88125 | 14.2 | 7.19 | 0.99 |
ALF | 18.64 | 0.7938 | 20.1 | 6.98 | 1.22 |
Proposed algorithm | 23.24 | 0.917 | 10.13 | 7.62 | 0.93 |
1 | SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization. Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2001. DOI: 10.1109/CVPR.2001.990493. |
2 | SHAO X, FEI L P, LIN W Dehazing method through polarimetric imaging and multi-scale analysis. Proc. of the SPIE Sensing Technology + Applications, 2015, 266- 273. |
3 |
QU Y F, ZOU Z F Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature. Optics Express, 2017, 25 (21): 25004.
doi: 10.1364/OE.25.025004 |
4 | SHWARTZ S, NAMER E, SCHECHNER Y Y Blind haze separation. Proc. of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2006, 1984- 1991. |
5 | MIYAZAKI D, AKIYAMA D, BABA M, et al Polarization-based dehazing using two reference objects. Proc. of the IEEE International Conference on Computer Vision, 2013, 852- 859. |
6 |
RONG Z, WANG L J Improved wavelet transform algorithm for single image dehazing. Optik-International Journal for Light and Electron Optics, 2014, 125 (13): 3064- 3066.
doi: 10.1016/j.ijleo.2013.12.077 |
7 | ZHANG H, LIU X, HUANG Z T, et al Single image dehazing based on fast wavelet transform with weighted image fusion. Proc. of the IEEE International Conference on Image Processing, 2014, 4542- 4546. |
8 |
XIE C H, QIAO W W, ZHANG X X, et al Single image dehazing algorithm using wavelet decomposition and fast kernel regression model. Journal of Electronic Imaging, 2016, 25 (4): 043003.
doi: 10.1117/1.JEI.25.4.043003 |
9 | XIAO C X, GAN J J Fast image dehazing using guided joint bilateral filter. Visual Computer, 2012, 28 (6/8): 713- 721. |
10 | SERIKAWA S, LU H M Underwater image dehazing using joint trilateral filter. Computers & Electrical Engineering, 2014, 40 (1): 41- 50. |
11 | SUN K, WANG B, ZHENG Z Z, et al. Fast single image dehazing using iterative bilateral filter. Proc. of the International Conference on Information Engineering & Computer Science, 2010. DOI: 10.1109/ICIECS.2010.5678374. |
12 | SHRIVASTAVA A, JAIN S Single image dehazing based on one dimensional linear filtering and adoptive histogram equalization method. Proc. of the International Conference on Electrical, Electronics, and Optimization Techniques, 2016, 4074- 4078. |
13 | GALDRAN A, ALVAREZ A, BRIA A, et al On the duality between Retinex and image dehazing. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 8212- 8221. |
14 | XIE B, FAN G, CAI Z X Improved single image dehazing using dark channel prior and multi-scale Retinex. Proc. of the International Conference on Intelligent System Design and Engineering Application, 2010, 848- 851. |
15 | ZHOU J J, ZHOU F G Single image dehazing motivated by Retinex theory. Proc. of the 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation, 2013, 243- 247. |
16 | FATTAL R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): 1–9. |
17 | TAN R T. Visibility in bad weather from a single image. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008. DOI: 10.1109/CVPR.2008.4587643. |
18 |
HE K M, SUN J, TANG X O Single image haze removal using dark channel prior. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2341- 2353.
doi: 10.1109/TPAMI.2010.168 |
19 | HE K M, SUN J, TANG X. Guided image filtering. Proc. of the European Conference on Computer Vision, 2010. DOI:10.1007/978-3-642-15549-9_1. |
20 | TAREL J, HAUTIERE N Fast visibility restoration from a single color or gray level image. Proc. of the IEEE 12th International Conference on Computer Vision, 2009, 2201- 2208. |
21 |
WANG J B, HE N, ZHANG L L, et al Single image dehazing with a physical model and dark channel prior. Neurocomputing, 2015, 149, 718- 728.
doi: 10.1016/j.neucom.2014.08.005 |
22 | HUANG C Q, YANG D, ZHANG R L, et al Improved algorithm for image haze removal based on dark channel priority. Computers & Electrical Engineering, 2018, 70, 659- 673. |
23 |
PENG Y T, CAO K M, COSMAN P C Generalization of the dark channel prior for single image restoration. IEEE Trans. on Image Processing, 2018, 27 (6): 2856- 2868.
doi: 10.1109/TIP.2018.2813092 |
24 |
WANG Z, HOU G J, PAN Z K, et al Single image dehazing and denoising combining dark channel prior and variational models. IET Computer Vision, 2018, 12 (4): 393- 402.
doi: 10.1049/iet-cvi.2017.0318 |
25 | SUAREZ P L, SAPPA A D, VINTIMILLA B X, et al Deep learning based single image dehazing. Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018, 1169- 1176. |
26 |
SANTRA S, MONDAL R, CHANDA B Learning a patch quality comparator for single image dehazing. IEEE Trans. on Image Processing, 2018, 27 (9): 4598- 4607.
doi: 10.1109/TIP.2018.2841198 |
27 |
CAI B L, XU X M, JIA K, et al Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. on Image Processing, 2016, 25 (11): 5187- 5198.
doi: 10.1109/TIP.2016.2598681 |
28 | REN W Q, LIU S, ZHANG H, et al Single image dehazing via multi-scale convolutional neural networks. Proc. of the European Conference on Computer Vision, 2016, 154- 169. |
29 | LI B Y, PENG X L, WANG Z Y, et al Aod-net: all-in-one dehazing network. Proc. of the IEEE International Conference on Computer Vision, 2017, 4770- 4778. |
30 |
DRAGOMIRETSKIY K, ZOSSO D Two-dimensional variational mode decomposition. Journal of Mathematical Imaging and Vision, 2017, 58 (2): 294- 320.
doi: 10.1007/s10851-017-0710-z |
31 | MENG G F, WANG Y, DUAN J Y, et al Efficient image dehazing with boundary constraint and contextual regularization. Proc. of the International Conference on Computer Vision, 2013, 617- 624. |
32 | LIU C X, SHEN Y Y, SHAO Y Q, et al Sky detection- and texture smoothing-based high-visibility haze removal from images and videos. Computer Animation and Virtual Worlds, 2017, 28 (3/4): e1776. |
33 | SUN T, ZHU X J, PAN J S, et al No-reference image quality assessment in spatial domain. Advances in Intelligent Systems and Computing, 2015, 381- 388. |
34 |
LIU X, ZHANG H, CHEUNG Y M, et al Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach. Computer Vision and Image Understanding, 2017, 162, 23- 33.
doi: 10.1016/j.cviu.2017.08.002 |
35 | XU Z, YANG X T, LI X, et al. The effectiveness of instance normalization: a strong baseline for single image dehazing. https://arxiv.org/abs/1805.03305. |
36 |
GALDRAN A image dehazing by artificial multiple-exposure image fusion. Signal Processing, 2018, 149, 135- 147.
doi: 10.1016/j.sigpro.2018.03.008 |
37 |
KIM S E, PARK T H, EOM I K Fast single image dehazing using saturation based transmission map estimation. IEEE Trans. on Image Processing, 2020, 29, 1985- 1998.
doi: 10.1109/TIP.2019.2948279 |
38 |
AMER K O, ELBOUZ M, ALFALOU A, et al Enhancing underwater optical imaging by using a low-pass polarization filter. Optics Express, 2019, 27 (2): 621- 643.
doi: 10.1364/OE.27.000621 |
39 |
BORKAR K, MUKHERJEE S Single image dehazing by approximating and eliminating the additional airlight component. Neurocomputing, 2020, 400, 294- 308.
doi: 10.1016/j.neucom.2020.03.027 |
40 | DHARA S K, ROY M, SEN D, et al Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing. IEEE Trans. on Circuits and Systems for Video Technology, 2020, 31 (5): 2076- 2081. |
41 |
RAIKWAR S C, TAPASWI S Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Trans. on Image Processing, 2020, 29, 4832- 4847.
doi: 10.1109/TIP.2020.2975909 |
42 | KANSAL I, KASANA S S Improved color attenuation prior based image de-fogging technique. Multimedia Tools and Applications, 2020, 79 (17/18): 12069- 12091. |
43 |
HAJJAMI J, NAPOLEON T, ALFALOU A Efficient sky dehazing by atmospheric light fusion. Sensors, 2020, 20 (17): 4893.
doi: 10.3390/s20174893 |
44 | ANCUTI C O, ANCUTI C, TIMOFTE R, et al O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images: NTIRE. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, 754- 762. |
[1] | Baoping WANG, Jianjun MA, Zhaoxuan HAN, Yan ZHANG, Yang FANG, Yimeng GE. Adaptive image enhancement algorithm based on fuzzy entropy and human visual characteristics [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1079-1088. |
[2] | Emad ELSHAZLY, Safey ABDELWAHAB, Refaat ABOUZAID, Osama ZAHRAN, Sayed ELARABY, Mohamed ELKORDY. A secure image steganography algorithm based on least significant bit and integer wavelet transform [J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 639-649. |
[3] | Xiaoping Shi, Rui Guo, Yi Zhu, and Zicai Wang. Astronomical image restoration using variational Bayesian blind deconvolution#br# [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1236-1247. |
[4] | Yongjian Liu, Peng Xiao, Hongchao Wu, and Weihua Xiao. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981. |
[5] | Rongchang Zhao and Yide Ma. Novel region-based image compression method based on spiking cortical model [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 161-. |
[6] | Mingbo Zhao, Jun He, Zaiqi Lu, and Qiang Fu. Range anomaly suppression based on neighborhood pixels detection in ladar range images [J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 68-75. |
[7] | Kun Liu1, Lei Guo, and Jingsong Chen. Contourlet transform for image fusion using cycle spinning [J]. Journal of Systems Engineering and Electronics, 2011, 22(2): 353-357. |
[8] | Chunhui Zhu*, Yi Shen, and Qiang Wang. New fast algorithm for hypercomplex decomposition and hypercomplex cross-correlation [J]. Journal of Systems Engineering and Electronics, 2010, 21(3): 514-519. |
[9] | Yang Miao, & Wei Zhiqiang. Fuzzy color morphological sieves? [J]. Journal of Systems Engineering and Electronics, 2009, 20(6): 1366-1372. |
[10] | Zhang Wenge, Liu Fang, Jiao Licheng & Gao Xinbo. SAR image despeckling based on edge detection and nonsubsampled second generation bandelets [J]. Journal of Systems Engineering and Electronics, 2009, 20(3): 519-526. |
[11] | Ma Yu, Gu Xiaodong & Wang Yuanyuan. Feature fusion method for edge detection of color images [J]. Journal of Systems Engineering and Electronics, 2009, 20(2): 394-399. |
[12] | Ma Liyong, Shen Yi & Ma Jiachen. Local spatial properties based image interpolation scheme using SVMs [J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 618-623. |
[13] | Deng Jiaxian & Wu Xiaoqin. Empirical data decomposition and its applications in image compression [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 164-170. |
[14] |
Hu Junhong , Zhang Tianxu & Jiang Haoyang.
New multi-DSP parallel computing architecture for real-time image processing
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||