1 |
BROCANELLI M, GUNBATAR Y, SERRANI A, et al. Robust control for unstart recovery in hypersonic vehicles. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2012: 1–20.
|
2 |
WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program. Proc. of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008: 1–14.
|
3 |
LEWIS M X-51 scrams into the future. Aerospace America, 2010, 48 (9): 27- 31.
|
4 |
MUSIELAK D High-speed air-breathing propulsion. Aerospace America, 2011, 49 (11): 49.
|
5 |
IM S, DO H Unstart phenomena induced by flow choking in scramjet inlet-isolators. Progress in Aerospace Sciences, 2018, 97, 1- 21.
doi: 10.1016/j.paerosci.2017.12.001
|
6 |
KONG C, CHANG J T, LI Y F, et al Flowfield reconstruction and shock train leading edge detection in scramjet isolators. AIAA Journal, 2020, 58 (9): 4068- 4080.
|
7 |
DEVARAJ M K K, JUTUR P, RAO S M V, et al. Experimental investigation of unstart dynamics driven by subsonic spillage in a hypersonic scramjet intake at Mach 6. Physics of Fluids, 2020, 32(2): 026103.
|
8 |
XUE L S, WANG C P, CHENG K M, et al Dynamic characteristics of separation shock in an unstarted hypersonic inlet flow. AIAA Journal, 2018, 56 (6): 2484- 2490.
|
9 |
LI N, CHANG J T, JIANG C Z, et al Unstart/restart hysteresis characteristics analysis of an over-under TBCC inlet caused by backpressure and splitter. Aerospace Science and Technology, 2017, 72, 418- 425.
|
10 |
DENG R Y, JIN Y Z, KIM H D, et al Numerical simulation of the unstart process of dual-mode scramjet. International Journal of Heat and Mass Transfer, 2017, 105, 394- 400.
doi: 10.1016/j.ijheatmasstransfer.2016.10.004
|
11 |
BOLENDER M A, WILKIN H, JACOBSEN L, et al. Flight dynamics of a hypersonic vehicle during inlet un-start. Proc. of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic System and Technologies Conference, 2009. DOI: 10.2514/6.2009-7292.
|
12 |
WIESE D P, ANNASWAMY A M, MUSE J A, et al. Adaptive control of a generic hypersonic vehicle. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2013. DOI: https://doi.org/10.2514/6.2013-4514.
|
13 |
LAVRETSKY E, GADIENT R, GREGORY I M Predictor-based model reference adaptive control. Journal of Guidance, Control and Dynamics, 2010, 33 (4): 1195- 1201.
doi: 10.2514/1.46849
|
14 |
LAVRETSKY E, HOVAKIMYAN N Stable adaptation in the presence of actuator constraints with flight control applications. Journal of Guidance, Control and Dynamics, 2007, 30 (2): 337- 345.
doi: 10.2514/1.26984
|
15 |
HASSOUN M H. Fundamentals of artificial neural networks. Cambridge: MIT Press, 1995.
|
16 |
WANG J M, WANG J B, ZHANG T. RBF neural network based adaptive sliding mode control for hypersonic flight vehicles. Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2016: 58–63.
|
17 |
ZHAI R Y, QI R Y, JIANG B. Adaptive sliding mode fault-tolerant control for hypersonic aircraft using RBF neural networks. Proc. of the Chinese Control and Decision Conference, China, 2016: 1879–1884.
|
18 |
SLAMA S, ERRACHDI A, BENREJEB M. Model reference adaptive control for MIMO nonlinear systems using RBF neural networks. Proc. of the International Conference on Advanced Systems and Electric Technologies, 2018: 346–351.
|
19 |
BOLENDER M A, DOMAN D B Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. Journal of Spacecraft and Rockets, 2007, 44 (2): 374- 387.
doi: 10.2514/1.23370
|
20 |
PARKER J T, SERRANI A, YURKOVICH S, et al Controloriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance, Control and Dynamics, 2007, 30 (3): 856- 869.
doi: 10.2514/1.27830
|
21 |
LAVRETSKY E, WISE K A. Robust and adaptive control with aerospace applications. New York: Springer Verlag, 2013.
|