1 |
LI M, SHAO J Q, LIU C C, et al Threat and detection technology of low and slow small drone. Police Technology, 2019, 2, 71- 74.
|
2 |
FU H, ABEYWICKRAMA S, ZHANG L, et al. Low-complexity portable passive drone surveillance via SDR-based signal processing. IEEE Communications Magazine, 2018, 56(4): 112–118.
|
3 |
NALAMATI M, KAPOOR A, SAQIB M, et al. Drone detection in long-range surveillance videos. Proc. of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2019. DOI: 10.1109/AVSS.2019.8909830.
|
4 |
SRIGRAROM S, HOE CHEW K Hybrid motion-based object detection for detecting and tracking of small and fast moving drones. Proc. of the International Conference on Unmanned Aircraft Systems, 2020, 615- 621.
|
5 |
NIJIM M, MANTRAWADI N. Drone classification and identification system by phenome analysis using data mining techniques. Proc. of the IEEE Symposium on Technologies for Homeland Security, 2016. DOI: 10.1109/THS.2016.7568949.
|
6 |
BUSSET J. Detection and tracking of drones using advanced acoustic cameras. Proceedings of SPIE, 2015, 9647: 96470F-1–96470F-8.
|
7 |
BENYAMIN M, GOLDMAN G H. Acoustic detection and tracking of a class I UAS with a small tetrahedral microphone array. Adelphi: Army Research Lab, 2014.
|
8 |
DROZDOWICZ J. 35 GHz FMCW drone detection system. Proc. of the 17th International Radar Symposium, 2016. DOI: 10.1109/IRS.2016.7497351.
|
9 |
KLARE J, BIALLAWONS O, CERUTTI-MAORI D Detection of UAVs using the MIMO radar MIRA-CLE Ka. Proc. of the 11th European Conference Synthetic Aperture Radar, 2016, 1- 4.
|
10 |
MOSES A, RUTHERFORD M J, VALAVANIS K P Radar-based detection and identification for miniature air vehicles. Proc. of the IEEE International Conference on Control Applications, 2011, 933- 940.
|
11 |
FANG G, YI J X, WAN X R, et al Experimental research of multi-static passive radar with a single antenna for drone detection. IEEE Access, 2018, 6, 33542- 33551.
doi: 10.1109/ACCESS.2018.2844556
|
12 |
KIM S, NOH Y H, LEE J, et al Electromagnetic signature of a quadcopter drone and its relationship with coupling mechanisms. IEEE Access, 2019, 7, 174764- 174773.
doi: 10.1109/ACCESS.2019.2956499
|
13 |
LI Y C, WANG X D, DING Z G Multi-target position and velocity estimation using OFDM communication signals. IEEE Trans. on Communications, 2020, 68 (2): 1160- 1174.
doi: 10.1109/TCOMM.2019.2956928
|
14 |
CHEW C C, SMALL E E Soil moisture sensing using spaceborne GNSS reflections: comparison of CYGNSS reflectivity to SMAP soil moisture. Geophysical Research Letters, 2018, 45 (9): 4049- 4057.
doi: 10.1029/2018GL077905
|
15 |
HYUNGLOK K, VENKAT L Use of cyclone global navigation satellite system (CyGNSS) observations for estimation of soil moisture. Geophysical Research Letters, 2018, 45 (16): 8272- 8282.
doi: 10.1029/2018GL078923
|
16 |
VORONOVICH A Numerical simulations of the soil moisture retrieval by measuring angular dependence of the reflection coefficient. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019, 3566- 3569.
|
17 |
SMALL E E, LARSON K M, BRAUN J J. Sensing vegetation growth with reflected GPS signals. Geophysical Research Letters, 2010. DOI: 10.1029/2010gl042951.
|
18 |
RODRIGUEZ-ALVAREZ N, AGUASCA A, VALENCIA E, et al Snow thickness monitoring using GNSS measurements. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (6): 1109- 1113.
doi: 10.1109/LGRS.2012.2190379
|
19 |
YANG L, YANG D K, ZHU Y L, et al Traffic flow detection using GNSS-R signals. Acta Geodaetica et Cartographica Sinica, 2018, 47 (3): 370- 375.
|
20 |
ZHANG J W, GUO H M Net cast interception system research aimed at low small slow target. Computer Engineering and Design, 2012, 33 (7): 2874- 2878.
|
21 |
XIE J, ZHANG J J, XUE M Study on GNSS-based detection technology of bistatic radar reflection signals of small satellites. Proc. of the 17th IEEE International Conference on Communication Technology, 2017, 1111- 1115.
|
22 |
ABE A, WALKER S D. Enhancement of 60 GHz transmission over 802.11ad using specular reflection. Proc. of the IEEE International Symposium on Local and Metropolitan Area Networks, 2016. DOI: 10.1109/LANMAN.2016.7548859.
|
23 |
CHEN D B, FAN Z K, HUANG H Measurement of effective receiving area of open wave guide. High Power Laser and Particle Beam, 2004, 16 (4): 474- 476.
|
24 |
MARTIN J, MULGREW B Analysis of the theoretical radar return signal form aircraft propeller blades. Proc. of the IEEE International Conference on Radar, 1990, 569- 572.
|
25 |
THEODORE R. Wireless communications: principles and practice. New Jersey: Prentice Hall, 1996.
|
26 |
NORLAND R Multipath of flat plate radar cross section measurements. Proc. of the International Conference on Radar, 2003, 152- 155.
|
27 |
ZHANG N T, MENG J. Reflection characteristics analysis of IR-UWB signal. Proc. of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. DOI: 10.1109/WiCom.2008.265.
|
28 |
SAVI P, BERTOLDO S, MILANI A GNSS reflectometry systems for soil permittivity determination. Proc. of the 13th European Conference on Antennas and Propagation, 2019, 1- 4.
|
29 |
YANG D K, ZHANG Q S Fundamentals and practice of GNSS reflection signal processing. Beijing: Electronic Industry Press, 2012.
|
30 |
HUANG F. Study on propagation characteristics and channel modeling of maritime radio waves. Hainan, China: Hainan University, 2015. (in Chinese)
|
31 |
YANG Y, JING L Impact of the metal permittivity on radar target scattering cross section. Laser & Infrared, 2013, 43 (2): 155- 158.
|
32 |
DAI Q W, LV S L, XIAO B Discussion on application conditions of ground penetrating radar. Geophysical and Geochemical Exploration, 2000, 2 (24): 157- 160.
|
33 |
TSAI C C, CHIANG C T, LIAO W J. Radar cross section measurement of unmanned aerial vehicles. Proc. of the IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, 2016. DOI: 10.1109/iWEM.2016.7504915.
|