Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (6): 1527-1538.doi: 10.23919/JSEE.2021.000128
• CONTROL THEORY AND APPLICATION • Previous Articles Next Articles
Jiaxin HU(), Leping YANG*(), Huan HUANG(), Yanwei ZHU()
Received:
2020-09-25
Online:
2022-01-05
Published:
2022-01-05
Contact:
Leping YANG
E-mail:joehu1989@163.com;ylp_1964@163.com;marshal-huanghuan@163.com;zywnudt@163.com
About author:
Supported by:
Jiaxin HU, Leping YANG, Huan HUANG, Yanwei ZHU. Optimal reconfiguration of constellation using adaptive innovation driven multiobjective evolutionary algorithm[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1527-1538.
1 | WECK DE O L, SCIALOM U, SIDDIQI A Optimal reconfiguration of satellite constellations with the auction algorithm. Acta Astronautica, 2008, 62 (2/3): 112- 130. |
2 |
SOLEYMANI M, FAKOOR M, BAKHTIARI M Optimal mission planning of the reconfiguration process of satellite constellations through orbital maneuvers: a novel technical framework. Advances in Space Research, 2019, 63 (10): 3369- 3384.
doi: 10.1016/j.asr.2019.02.003 |
3 |
FAKOOR M, BAKHTIARI M, SOLEYMANI M Optimal design of the satellite constellation arrangement reconfiguration process. Advances in Space Research, 2016, 58 (3): 372- 386.
doi: 10.1016/j.asr.2016.04.031 |
4 | CHEN Y G, MAHALEC V, CHEN Y W, et al Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution. European Journal of Operational Research, 2014, 242 (1): 10- 20. |
5 | DONG L L, YAO H, RANJAN R, et al Fast lightweight reconfiguration of virtual constellation for obtaining of earth observation big data. Cluster Computing, 2017, 20 (5/6): 1- 12. |
6 |
HITOMI N, SELVA D Incorporating expert knowledge into evolutionary algorithms with operators and constraints to design satellite systems. Applied Soft Computing Journal, 2018, 66, 330- 345.
doi: 10.1016/j.asoc.2018.02.017 |
7 | SELVA D. Knowledge-intensive global optimization of Earth observing system architectures: a climate-centric case study. Proceeding of the International Society for Optical Engineering, 2014, 9421: 1−23. |
8 | OBAYASHI S, SASAKI D Visualization and data mining of pareto solutions using self-organizing map. Evolutionary Multi-Criterion Optimization, 2003, 56 (2632): 796- 809. |
9 |
GABRIEL K R The biplot-graphical display of matrices with applications to principal components analysis. Biometrika, 1971, 58 (3): 453- 467.
doi: 10.1093/biomet/58.3.453 |
10 |
TENENBAUM J B A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290 (5500): 2319- 2323.
doi: 10.1126/science.290.5500.2319 |
11 |
QUINLAN J R Simplifying decision trees. International Journal of Man-machine Studies, 1987, 27 (3): 221- 234.
doi: 10.1016/S0020-7373(87)80053-6 |
12 |
WANG H L, KWONG S, JIN Y C, et al Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems, 2005, 149 (1): 149- 186.
doi: 10.1016/j.fss.2004.07.013 |
13 |
CERVONE G, FRANZESE P, KEESEE A P K Algorithm quasi-optimal (AQ) learning. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2 (2): 218- 236.
doi: 10.1002/wics.78 |
14 |
BANDARU S, DEB K Towards automating the discovery of certain innovative design principles through a clustering-based optimization technique. Engineering Optimization, 2011, 43 (9): 911- 941.
doi: 10.1080/0305215X.2010.528410 |
15 | HITOMI N, SELVA D. A hyperheuristic approach to leveraging domain knowledge in multi-objective evolutionary algorithms. Proc. of the ASME Design Engineering Technical Conference, 2016: 1−12. |
16 | COSTA L DA, FIALHO A, SCHOENAUER M, et al. Adaptive operator selection with dynamic multi-armed bandits. Proc. of the Genetic and Evolutionary Computation Conference, 2008: 913−920. |
17 | LEGGE R S J. Optimization and valuation of recongurable satellite constellations under uncertainty. Massachusetts, America: Massachusetts Institute of Technology, 2014. |
18 |
HAN C, BAI S Z, ZHANG S H, et al Visibility optimization of satellite constellations using a hybrid method. Acta Astronautica, 2019, 163, 250- 263.
doi: 10.1016/j.actaastro.2019.01.025 |
19 | EFREMOV R, INSUA D R, LOTOV A. A framework for participatory decision support using Pareto frontier visualization, goal identification and arbitration. European Journal of Operational Research, 2009, 199(2): 459−467. |
20 |
BANDARU S, ASLAM T, NG A H C, et al Generalized higher-level automated innovization with application to inventory management. European Journal of Operational Research, 2015, 243 (2): 480- 496.
doi: 10.1016/j.ejor.2014.11.015 |
21 |
SELVA D, KREJCI D A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronautica, 2012, 74, 50- 68.
doi: 10.1016/j.actaastro.2011.12.014 |
22 | PURSHOUSE R C, FLEMING P J, FONSECA C M, et al. A dimensionally-aware genetic programming architecture for automated innovization. Proc. of the International Conference on Evolutionary Multi-Criterion Optimization, 2013: 515−531. |
23 | LOBO F G, LIMA C F, MICHALEWICZ Z. Parameter setting in evolutionary algorithms. New York: Springer, 2007. |
24 |
ZITZLER E, DEB K, THIELE L Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8 (2): 173- 195.
doi: 10.1162/106365600568202 |
25 | ZITZLER E, KUNZLI S Indicator-based selection in multiobjective search. Lecture Notes in Computer Science, 2004, 3242, 832- 842. |
[1] | Zining WANG, Min LIN, Xiaogang TANG, Kefeng GUO, Shuo HUANG, Ming CHENG. Multi-objective robust secure beamforming for cognitive satellite and UAV networks [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 789-798. |
[2] | Shiyun LI, Sheng ZHONG, Zhi PEI, Wenchao YI, Yong CHEN, Cheng WANG, Wenzhu ZHANG. Multi-objective reconfigurable production line scheduling for smart home appliances [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 297-317. |
[3] | Jianjiang WANG, Xuejun HU, Chuan HE. Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 163-177. |
[4] | Zhen XU, Enze ZHANG, Qingwei CHEN. Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 130-141. |
[5] | Yan'gang LIANG, Zheng QIN. A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 535-544. |
[6] | Jiale GAO, Qinghua XING, Chengli FAN, Zhibing LIANG. Double adaptive selection strategy for MOEA/D [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 132-143. |
[7] | Jiting Li, Sheng Zhang, Xiaolu Liu, and Renjie He. Multi-objective evolutionary optimization for geostationary orbit satellite mission planning [J]. Systems Engineering and Electronics, 2017, 28(5): 934-945. |
[8] | Ying Zhang, Rennong Yang, Jialiang Zuo, and Xiaoning Jing. Enhancing MOEA/D with uniform population initialization, weight vector design and adjustment using uniform design [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 1010-1022. |
[9] | Haipeng Ren* and Yang Zhao. Immune particle swarm optimization of linear frequency modulation in acoustic communication [J]. Systems Engineering and Electronics, 2015, 26(3): 450-456. |
[10] | Lixia Han, Shujuan Jiang, and Shaojiang Lan. Novel electromagnetism-like mechanism method for multiobjective optimization problems [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 182-. |
[11] | Wei Jingxuan & Wang Yuping. Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 1035-1040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||