Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (6): 1463-1476.doi: 10.23919/JSEE.2021.000124
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Jinqiang HU1(), Husheng WU1,*(), Renjun ZHAN1(), Rafik MENASSEL2(), Xuanwu ZHOU3()
Received:
2020-11-29
Online:
2022-01-05
Published:
2022-01-05
Contact:
Husheng WU
E-mail:hujinqiang002@163.com;wuhusheng0421@163.com;zhanrenjun@aliyun.com;r.menassel@univ-tebessa.dz;schwoodchow@163.com
About author:
Supported by:
Jinqiang HU, Husheng WU, Renjun ZHAN, Rafik MENASSEL, Xuanwu ZHOU. Self-organized search-attack mission planning for UAV swarm based on wolf pack hunting behavior[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1463-1476.
Table 1
Mapping relationship between wolf pack hunting and UAV swarm cooperative search-attack"
Behavior characteristics | Wolf pack hunting | UAV swarm cooperative search-attack |
Behavior actor | Wolf pack | UAV swarm |
Prey | Target | |
Behavior space | Hunting territory | Task environment |
Scouting | Search target | |
Specific behavior | Labor division | Attack task allocation |
Besieging | Coordinated attack |
Table 4
Resource requirements of targets and UAV resources in different time points"
Time/s | Target | Target resource requirement | UAV resource | Remaining resource |
18.2 | T2 | (2,3,1) | U3(2,2,1) U4(1,1,3) | (0,0,0) (1,0,3) |
19.4 | (0,1,0) | |||
19.2 | T1 | (3,2,1) | U1(1,2,1) U2(2,1,0) | (0,0,0) (0,1,0) |
21.4 | (2,0,0) | |||
28.8 | T3 | (1,0,2) | U4(1,0,3) | (0,0,1) |
1 |
HONG L, GUO H Z, LIU J J, et al Toward swarm coordination: topology-aware inter-UAV routing optimization. IEEE Trans. on Vehicular Technology, 2020, 69 (9): 10177- 10187.
doi: 10.1109/TVT.2020.3003356 |
2 |
WANG Y, RU Z Y, WANG K, et al Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing. IEEE Trans. on Cybernetics, 2020, 50 (9): 3984- 3997.
doi: 10.1109/TCYB.2019.2935466 |
3 |
KIM K S, KIM H Y, CHOI H L A bid-based grouping method for communication-efficient decentralized multi-UAV task allocation. International Journal of Aeronautical and Space Sciences, 2020, 21 (1): 290- 302.
doi: 10.1007/s42405-019-00205-1 |
4 |
ZHANG Y Z, FENG W C, SHI G Q, et al UAV swarm mission planning in dynamic environment using consensus-based bundle algorithm. Sensors, 2020, 20 (8): 2307- 2327.
doi: 10.3390/s20082307 |
5 |
ZHAO X Y, ZONG Q, TIAN B L, et al Fast task allocation for heterogeneous unmanned aerial vehicles through reinforcement learning. Aerospace Science and Technology, 2019, 92, 588- 594.
doi: 10.1016/j.ast.2019.06.024 |
6 |
XIE S Y, ZHANG A, BI W H, et al Multi-UAV mission allocation under constraint. Applied Sciences, 2019, 9 (11): 2184.
doi: 10.3390/app9112184 |
7 | MOON S, OH E, SHIM D H An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments. Journal of Intelligent & Robotic Systems, 2013, 70 (1): 303- 313. |
8 |
CHEN X, LIU Y T, YIN L Y, et al Cooperative task assignment and track planning for multi-UAV attack mobile targets. Journal of Intelligent & Robotic Systems, 2020, 100 (3): 1383- 1400.
doi: 10.1007/s10846-020-01241-w |
9 |
HAFEZ A T, KAMEL M A Cooperative task assignment and trajectory planning of unmanned systems via HFLC and PSO. Unmanned Systems, 2019, 7 (2): 65- 81.
doi: 10.1142/S2301385019500018 |
10 | AUTENRIEB J, STRAWA N, SHIN H S, et al. A mission planning and task allocation framework for multi-UAV swarm coordination. Proc. of the Workshop on Research, Education and Development of Unmanned Aerial Systems, 2019: 297−304. |
11 | SUN X L, QI N M, CHENG D, et al Cooperative control algorithm of task assignment and path planning for multiple UAVs. Systems Engineering and Electronics, 2015, 37 (12): 2772- 2776. |
12 |
MOUSAVI S, AFGHAH F, ASHDOWN J D, et al Use of a quantum genetic algorithm for coalition formation in large-scale UAV networks. Ad Hoc Networks, 2019, 87, 26- 36.
doi: 10.1016/j.adhoc.2018.11.008 |
13 |
YAN F L Gauss interference ant colony algorithm-based optimization of UAV mission planning. The Journal of Supercomputing, 2020, 76 (2): 1170- 1179.
doi: 10.1007/s11227-018-2540-1 |
14 | ALHAQBANI A, KURDI H, YOUCEF-TOUMI K Fish-inspired task allocation algorithm for multiple unmanned aerial vehicles in search and rescue missions. Remote Sensing, 2021, 13 (1): 27- 35. |
15 |
ZHEN Z Y, ZHU P, XUE Y X, et al Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets cooperative search-attack. Chinese Journal of Aeronautics, 2019, 32 (12): 2706- 2716.
doi: 10.1016/j.cja.2019.05.012 |
16 |
YAN F, ZHU X P, ZHOU Z, et al Real-time task allocation for a heterogeneous multi-UAV simultaneous attack. Scientia Sinica Informationis, 2019, 49 (5): 555- 569.
doi: 10.1360/N112018-00338 |
17 | ZHEN Z Y, XING D J, GAO C Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm. Aerospace Science & Technology, 2018, 76, 402- 411. |
18 | WU W N, CUI N G, GUO J F, et al Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles. Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (6): 1827- 1837. |
19 |
YE F, CHEN J, SUN Q, et al Decentralized task allocation for heterogeneous multi-UAV system with task coupling constraints. The Journal of Supercomputing, 2021, 77 (1): 111- 132.
doi: 10.1007/s11227-020-03264-4 |
20 | SLOWIK A, KWASNICKA H Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Trans. on Industrial Informatics, 2017, 14 (3): 1004- 1015. |
21 | KIM M H, BAIK H, LEE S Response threshold model based UAV search planning and task allocation. Journal of Intelligent & Robotic Systems, 2014, 75 (3): 625- 640. |
22 | WU H S, LI H, XIAO R B, et al Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm. Physica A: Statistical Mechanics & Its Applications, 2018, 491 (2): 127- 141. |
23 |
KURDI H, ALDAOOD M F, AL-MEGREN S, et al Adaptive task allocation for multi-UAV systems based on bacteria foraging behaviour. Applied Soft Computing, 2019, 83, 105643.
doi: 10.1016/j.asoc.2019.105643 |
24 |
KURDI H A, EBTESAM A, MARAM A, et al Autonomous task allocation for multi-UAV systems based on the locust elastic behavior. Applied Soft Computing, 2018, 71, 110- 126.
doi: 10.1016/j.asoc.2018.06.006 |
25 |
MURO C, ESCOBEDO R, SPECTOR L, et al Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioural Processes, 2011, 88 (3): 192- 197.
doi: 10.1016/j.beproc.2011.09.006 |
26 |
MECH L D Alpha status, dominance, and division of labor in wolf packs. Canadian Journal of Zoology, 1999, 77 (8): 1196- 1203.
doi: 10.1139/z99-099 |
27 | MADDEN J D, ARKIN R C, MACNULTY D R. Multi-robot system based on model of wolf hunting behavior to emulate wolf and elk interactions. Proc. of the IEEE International Conference on Robotics & Biomimetics, 2011: 1043–1050. |
28 | WU H S, XUE J J, XIAO R B, et al Uncertain bilevel knapsack problem based on an improved binary wolf pack algorithm. Frontiers of Information Technology & Electronic Engineering, 2020, 21, 1356- 1368. |
29 |
XIAO R B, WU H S, HU L, et al A swarm intelligence labour division approach to solving complex area coverage problems of swarm robots. International Journal of Bio-Inspired Computation, 2020, 15 (4): 224- 238.
doi: 10.1504/IJBIC.2020.108598 |
30 | XIAO R B, WANG Y C Labour division in swarm intelligence for allocation problems: a survey. International Journal of Bio-Inspired Computation, 2018, 12 (2): 8- 12. |
31 | LIANG W H, HE J H, WANG S X, et al Improved cluster collaboration algorithm based on wolf pack behavior. Cluster Computing, 2019, 22 (3): 6181- 6196. |
32 |
BASSING S B, AUSBAND D E, MITCHELL M S, et al Stable pack abundance and distribution in a harvested wolf population. The Journal of Wildlife Management, 2019, 83 (3): 577- 590.
doi: 10.1002/jwmg.21616 |
33 |
BUGLIONE M, TROISI S R, PETRELLI S, et al The first report on the ecology and distribution of the wolf population in cilento, vallo di siano and alburni national park. Biology Bulletin, 2020, 47 (6): 640- 654.
doi: 10.1134/S1062359021010040 |
34 |
HU J Q, WU H S, ZHONG B, et al Swarm intelligence-based optimisation algorithms: an overview and future research issues. International Journal of Automation and Control, 2020, 14 (5/6): 656- 693.
doi: 10.1504/IJAAC.2020.110077 |
35 |
PIOTROWSKI A P, NAPIORKOWSKI M J, NAPIORKOWSKI J J, et al Swarm intelligence and evolutionary algorithms: performance versus speed. Information Sciences, 2017, 384, 34- 85.
doi: 10.1016/j.ins.2016.12.028 |
36 |
NEDJAH N, MOURELLE L D M, MORAIS R G Inspiration-wise swarm intelligence meta-heuristics for continuous optimisation: a survey−part I. International Journal of Bio-Inspired Computation, 2020, 15 (4): 207- 223.
doi: 10.1504/IJBIC.2020.108597 |
37 |
YAN F, ZHU X P, ZHOU Z, et al A hierarchical mission planning method for simultaneous arrival of multi-UAV coalition. Applied Sciences, 2019, 9 (10): 1986- 2004.
doi: 10.3390/app9101986 |
[1] | Yangyang JIANG, Yan GAO, Wenqi SONG, Yue LI, Quan QUAN. Bibliometric analysis of UAV swarms [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 406-425. |
[2] | Husheng WU, Hao LI, Renbin XIAO. A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1180-1199. |
[3] | Yu Liu, Xiaoxi Ling, Yu Liang, and Guanghao Liu. Improved artificial bee colony algorithm with mutual learning [J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 265-275. |
[4] | Chaohua Dai1,Weirong Chen1,Yonghua Song2,and Yunfang Zhu3. Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization [J]. Journal of Systems Engineering and Electronics, 2010, 21(2): 300-311. |
[5] | Zheng Yongkang, Chen Weirong, Dai Chaohua & Wang Weibo. Stochastic focusing search: a novel optimization algorithm for real-parameter optimization [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 869-876. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||