Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (6): 1407-1420.doi: 10.23919/JSEE.2021.000120
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Jun WEN(), Xiaolu LIU(), Lei HE*()
Received:
2020-10-22
Accepted:
2021-11-08
Online:
2022-01-05
Published:
2022-01-05
Contact:
Lei HE
E-mail:jun_wen@aliyun.com;lxl_sunny@nudt.edu.cn;helei@nudt.edu.cn
About author:
Supported by:
Jun WEN, Xiaolu LIU, Lei HE. Real-time online rescheduling for multiple agile satellites with emergent tasks[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1407-1420.
Table 3
Comparison of average calculation time of online rescheduling of different algorithms s "
Satellite | Number of tasks | FR | MMDPOP | GS | MIPS | SSR |
1 | 100 | 1.6698 | <0.0001 | <0.0001 | 0.0082 | <0.0001 |
1 | 200 | 4.0864 | <0.0001 | <0.0001 | 0.0134 | <0.0001 |
1 | 300 | 7.0089 | <0.0001 | <0.0001 | 0.0174 | <0.0001 |
1 | 400 | 9.9342 | <0.0001 | <0.0001 | 0.0238 | <0.0001 |
2 | 100 | 1.4958 | <0.0001 | <0.0001 | 0.0087 | <0.0001 |
2 | 200 | 3.9623 | 0.0001 | 0.0001 | 0.0171 | <0.0001 |
2 | 300 | 7.2068 | 0.0001 | 0.0001 | 0.0280 | 0.0001 |
2 | 400 | 10.7444 | 0.0001 | 0.0001 | 0.0379 | 0.0001 |
3 | 100 | 1.4547 | 0.0001 | 0.0001 | 0.0086 | <0.0001 |
3 | 200 | 3.5889 | 0.0001 | 0.0001 | 0.0183 | 0.0001 |
3 | 300 | 6.6247 | 0.0001 | 0.0001 | 0.0295 | 0.0001 |
3 | 400 | 10.1203 | 0.0002 | 0.0002 | 0.0460 | 0.0001 |
Average | ? | 5.6507 | 0.0001 | 0.0001 | 0.0239 | 0.0001 |
Table 2
Comparison of average objective values of different algorithms"
Satellite | Number of tasks | FR | MMDPOP | GS | MIPS | SSR |
1 | 100 | 330.01 | 325.33 | 325.87 | 325.87 | 325.15 |
1 | 200 | 556.12 | 535.77 | 539.46 | 539.32 | 530.05 |
1 | 300 | 671.67 | 669.51 | 672.26 | 674.24 | 658.34 |
1 | 400 | 731.87 | 738.24 | 738.47 | 743.85 | 724.70 |
2 | 100 | 451.75 | 442.75 | 447.61 | 448.21 | 447.42 |
2 | 200 | 870.55 | 849.99 | 860.48 | 859.14 | 848.56 |
2 | 300 | 1190.67 | 1186.92 | 1185.50 | 1209.66 | 1153.84 |
2 | 400 | 1385.66 | 1415.30 | 1410.54 | 1443.27 | 1369.31 |
3 | 100 | 458.75 | 454.49 | 458.00 | 457.98 | 458.43 |
3 | 200 | 945.23 | 928.32 | 933.77 | 935.87 | 934.42 |
3 | 300 | 1446.54 | 1427.96 | 1435.84 | 1439.00 | 1419.59 |
3 | 400 | 1770.61 | 1785.36 | 1775.09 | 1809.00 | 1749.47 |
Average | ? | 900.78 | 896.66 | 898.57 | 907.12 | 884.94 |
1 |
AYTUG H, LAWLEY M A, MCKAY K, et al Executing production schedules in the face of uncertainties: a review and some future directions. European Journal of Operational Research, 2005, 161 (1): 86- 110.
doi: 10.1016/j.ejor.2003.08.027 |
2 |
VIEIRA G E, HERRMANN J W, LIN E Rescheduling manufacturing systems: a framework of strategies, policies, and methods. Journal of Scheduling, 2003, 6 (1): 39- 62.
doi: 10.1023/A:1022235519958 |
3 |
WU M C, CHEN S Y A cost model for justifying the acceptance of rush orders. International Journal of Production Research, 1996, 34 (7): 1963- 1974.
doi: 10.1080/00207549608905007 |
4 | WU M C, CHEN S Y A multiple criteria decision-making model for justifying the acceptance of rush orders. Production Planning & Control, 1997, 8 (8): 753- 761. |
5 | KIM J, AHN J. Task and attitude control scheduling of multiple agile satellites considering task-dependent transition time. Proc. of the AIAA Scitech 2020 Forum, 2020. DOI: 10.2514/1.I010775. |
6 | ARREDONDO F, MARTINEZ E Learning and adaptation of a policy for dynamic order acceptance in make-to-order manufacturing. Computers & Industrial Engineering, 2010, 58 (1): 70- 83. |
7 | SNOEK M. Neuro-genetic order acceptance in a job shop setting. Proc. of the 7th International Conference on Neural Information Processing, 2000: 815–819. |
8 |
YANG W, FUNG R Y K Stochastic optimization model for order acceptance with multiple demand classes and uncertain demand/supply. Engineering Optimization, 2014, 46 (6): 824- 841.
doi: 10.1080/0305215X.2013.800056 |
9 |
NANDI A, ROGERS P Using simulation to make order acceptance/rejection decisions. Simulation, 2004, 80 (3): 131- 142.
doi: 10.1177/0037549704045046 |
10 |
GHOMI S M T F, IRANPOOR M Earliness-tardiness-lost sales dynamic job-shop scheduling. Production Engineering, 2010, 4 (2/3): 221- 230.
doi: 10.1007/s11740-010-0211-z |
11 |
RAHMAN H F, SARKER R, ESSAM D A real-time order acceptance and scheduling approach for permutation flow shop problems. European Journal of Operational Research, 2015, 247 (2): 488- 503.
doi: 10.1016/j.ejor.2015.06.018 |
12 | SU L H, CHOU F D Heuristic for scheduling in a two-machine bicriteria dynamic flowshop with setup and processing times separated. Production Planning & Control, 2000, 11 (8): 806- 819. |
13 | QIU D S, HE C, LIU J, et al. A dynamic scheduling method of earth-observing satellites by employing rolling horizon strategy. The Scientific World Journal, 2013. DOI: 10.1155/2013/304047. |
14 |
LIAO D Y, YANG Y T Imaging order scheduling of an earth observation satellite. IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37 (5): 794- 802.
doi: 10.1109/TSMCC.2007.900668 |
15 |
XU L, WANG Q, HUANG S M Dynamic order acceptance and scheduling problem with sequence-dependent setup time. International Journal of Production Research, 2015, 53 (19): 5797- 5808.
doi: 10.1080/00207543.2015.1005768 |
16 |
WANG J J, ZHU X M, YANG L T, et al Towards dynamic real-time scheduling for multiple earth observation satellites. Journal of Computer and System Sciences, 2015, 81 (1): 110- 124.
doi: 10.1016/j.jcss.2014.06.016 |
17 | CHIEN S, TROESCH M. Heuristic onboard pointing re-scheduling for an earth observing spacecraft. Proc. of the 25th International Conference on Automated Planning and Scheduling, 2015: 1−13. |
18 |
BEAUMET G, VERFAILLIE G, CHARMEAU M C Feasibility of autonomous decision making on board an agile earth-observing satellite. Computational Intelligence, 2011, 27 (1): 123- 139.
doi: 10.1111/j.1467-8640.2010.00375.x |
19 |
WU G H, MA M H, ZHU J H, et al Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks. Journal of Systems Engineering and Electronics, 2012, 23 (5): 723- 733.
doi: 10.1109/JSEE.2012.00089 |
20 |
LI Y Q, WANG R X, XU M Q Rescheduling of observing spacecraft using fuzzy neural network and ant colony algorithm. Chinese Journal of Aeronautics, 2014, 27 (3): 678- 687.
doi: 10.1016/j.cja.2014.04.027 |
21 |
HE L, LIU X L, CHEN Y W, et al Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment. Advances in Space Research, 2019, 63 (2): 897- 912.
doi: 10.1016/j.asr.2018.10.007 |
22 |
CHU X G, CHEN Y N, TAN Y J An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling. Advances in Space Research, 2017, 60 (9): 2077- 2090.
doi: 10.1016/j.asr.2017.07.026 |
23 | CUI J T, ZHANG X Application of a multi-satellite dynamic mission scheduling model based on mission priority in emergency response. Sensors, 2019, 19, 14- 30. |
24 |
WANG D J, YIN Y Q, CHENG T C E Parallel-machine rescheduling with job unavailability and rejection. Omega, 2018, 81, 246- 260.
doi: 10.1016/j.omega.2018.04.008 |
25 |
BAYKASOGLU A, KARASLAN F S Solving comprehensive dynamic job shop scheduling problem by using a grasp-based approach. International Journal of Production Research, 2017, 55 (11): 3308- 3325.
doi: 10.1080/00207543.2017.1306134 |
26 | DA SILVA N C O, SCARPIN C T, PECORA JR J E, et al Online single machine scheduling with setup times depending on the jobs sequence. Computers & Industrial Engineering, 2019, 129, 251- 258. |
27 | WANG J J, ZHU X G, ZHU J H, et al. A realtime scheduling algorithm for multiple earth observation satellites. Proc. of the 9th IEEE International Conference on Embedded Software and Systems, 2012, 673–680. |
28 | GAO K, WU G H, ZHU J H Multi-satellite observation scheduling based on a hybrid ant colony optimization. Advanced Materials Research, 2013, 765, 532- 536. |
29 | SHI Y L, JIANG X J, ZHANG Y F, et al Static routing design of solar synchronous orbit micro-nano satellite constellation. Electronic Design Engineering, 2018, 25 (17): 25- 29. |
30 | WU G H, WANG H L, PEDRYCZ W, et al Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy. Computers & Industrial Engineering, 2017, 113, 576- 588. |
31 |
YAO F, LI J T, CHEN Y N, et al Task allocation strategies for cooperative task planning of multi-autonomous satellite constellation. Advances in Space Research, 2019, 63 (2): 1073- 1084.
doi: 10.1016/j.asr.2018.10.002 |
32 | KLEINSCHRODT A, NOGUEIRA T, REED N, et al. Mission planning for the TIM nanosatellite remote sensing constellation. Proc. of the 69th International Astronautical Congress, 2018. DOI: 10.1007/978-94-011-5088-0_37. |
33 |
XU R, CHEN H P, LIANG X L, et al Priority-based constructive algorithms for scheduling agile earth observation satellites with total priority maximization. Expert Systems with Applications, 2016, 51, 195- 206.
doi: 10.1016/j.eswa.2015.12.039 |
34 | FENG P, CHEN H, PENG S, et al. A method of distributed multi-satellite mission scheduling based on improved contract net protocol. Proc. of the 11th International Conference on Natural Computation, 2015, 1062–1068. |
35 |
SKOBELEV P O, SIMONOVA E V, ZHILYAEV A A, et al Application of multi-agent technology in the scheduling system of swarm of earth remote sensing satellites. Procedia Computer Science, 2017, 103, 396- 402.
doi: 10.1016/j.procs.2017.01.127 |
36 | HE L, DE WEERDT M, YORKE-SMITH N. Tabu-based large neighbourhood search for time/sequence-dependent scheduling problems with time windows. Proc. of the 29th International Conference on Automated Planning and Scheduling, 2019: 186−194. |
37 |
HE L, DE WEERDT M, YORKE-SMITH N Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm. Journal of Intelligent Manufacturing, 2020, 31, 1051- 1078.
doi: 10.1007/s10845-019-01518-4 |
38 | HE L, LIU X L, LAPORTE G, et al An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling. Computers and Operations Research, 2018, 100 (1): 12- 25. |
39 |
HSIEH F S Analysis of contract net in multi-agent systems. Automatica, 2006, 42 (5): 733- 740.
doi: 10.1016/j.automatica.2005.12.002 |
40 | DE NIJS F, SPAAN M, DE WEERDT M. Preallocation and planning under stochastic resource constraints. Proc. of the 32nd AAAI Conference on Artificial Intelligence, 2018, 4662–4669. |
41 | PAUKSHTIS E A. Constrained Markov decision processes. Boca Raton: CRC Press, 1999. |
42 | IBM. IBM CPLEX Optimizer, 2018. https://www.ibm.com/analytics/cplex-optimizer. |
43 | LI G L, XING L N, CHEN Y W A hybrid online scheduling mechanism with revision and progressive techniques for autonomous earth observation satellite. Acta Astronautica, 2017, 140 (1): 308- 321. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||