
Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (6): 1364-1374.doi: 10.23919/JSEE.2021.000116
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Jingcheng MIAO1(
), Na LYU1,*(
), Kefan CHEN2(
), Zhuo CHEN1(
), Weiting GAO1(
)
Received:2020-05-21
Online:2022-01-05
Published:2022-01-05
Contact:
Na LYU
E-mail:zhongdcz@163.com;lvnn2007@163.com;1148180199@qq.com;408258313@qq.com;519105941@qq.com
About author:Supported by:Jingcheng MIAO, Na LYU, Kefan CHEN, Zhuo CHEN, Weiting GAO. A highly reliable embedding algorithm for airborne tactical network virtualization[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1364-1374.
Table 1
Element attributes of ATSN"
| Description | Mathematical representation |
| Basic power, available power | |
| Node location attribute | |
| Link bandwidth attribute | |
| Link location attribute | |
| All substrate paths set | |
Table 3
Detailed network parameters"
| Description | ATSN | ATVN |
| Number of nodes | 50 | An integer, uniform distributed [ |
| Number of links | 139 | Link connection probability equal to 0.5 |
| Node power | An integer, uniform distributed [ | - |
| Link bandwidth | An integer, uniform distributed [ | - |
| Transmission rate | - | An integer, uniform distributed [ |
| VN arrival rate | - | A Poisson process with an average arrival rate of 5 per 100 time units |
| Duration time | - | 100 time units |
| Total run time | 10 000 time units (100 time windows) | |
Table 4
Compared algorithms"
| Algorithm | Description |
| TR-ATVNE | Node mapping evaluates the ranking value by transmission-rate resource while link mapping adopts a feasible minimum-cost path splitting rule. |
| JBP-WVNE[ | Node mapping evaluates the embedding value by expanded resources while link mapping uses path splitting while allocating power and bandwidth resources. |
| B-VNE[ | Node mapping evaluates the embedding value only by power resource while link mapping finds a single path by the shortest path algorithm. |
| 1 |
KOTT A, SWAMI A, WEST B J The Internet of Battle Things. Computer, 2016, 49 (12): 70- 75.
doi: 10.1109/MC.2016.355 |
| 2 |
CHEN K F, ZHAO S H, LV N, et al Segment routing based traffic scheduling for the software-defined airborne backbone network. IEEE Access, 2019, 7, 106162- 106178.
doi: 10.1109/ACCESS.2019.2930229 |
| 3 | LYU N, LIU C, CHEN K F, et al A method for centralized control network employment of aeronautic swarm. Acta Aeronautica et Astronautica Sinica, 2018, 39 (7): 321961. |
| 4 | LYV N, CAO F B, CHEN K F, et al Adaptive neighbor detection method of software-defined airborne net-work for aeronautic swarm. Systems Engineering and Electronics, 2019, 41 (10): 2260- 2270. |
| 5 | LIANG C, YU F R Wireless network virtualization: a survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 2015, 17 (1): 358- 380. |
| 6 | KHAN I, BELQASMI F, GLITHO R, et al Wireless sensor network virtualization: a survey. IEEE Communications Surveys & Tutorials, 2016, 18 (1): 553- 576. |
| 7 | VAN DE BELT J, AHMADI H, DOYLE L E Defining and surveying wireless link virtualization and wire-less network virtualization. IEEE Communications Surveys & Tutorials, 2017, 19 (3): 1603- 1627. |
| 8 |
CAO H T, HU H, QU Z C, et al Heuristic solutions of virtual network embedding: a survey. China Communications, 2018, 15 (3): 186- 219.
doi: 10.1109/CC.2018.8332001 |
| 9 | FISCHER A, BOTERO J F, BECK M T, et al Virtual network embedding: a survey. IEEE Communications surveys & Tutorials, 2013, 15 (4): 1888- 1906. |
| 10 |
CAO H T, YANG L X, ZHU H B Novel node-ranking approach and multiple topology attributes-based embedding algorithm for single-domain virtual net-work embedding. IEEE Internet of Things Journal, 2018, 5 (1): 108- 120.
doi: 10.1109/JIOT.2017.2773489 |
| 11 |
NASHID S, SHIHABUR R C, REAZ A, et al Virtual network survivability through joint space capacity allocation and embedding. IEEE Journal on Selected Areas in Communications, 2018, 36 (3): 502- 518.
doi: 10.1109/JSAC.2018.2815430 |
| 12 |
WANG X J, SONG M, YUAN D Y, et al Robust virtual network embedding based on component connectivity in large-scale network. China Communications, 2017, 14 (10): 164- 179.
doi: 10.1109/CC.2017.8107641 |
| 13 |
CHOWDHURY M, RAHMAN M R, BOUTABA R ViNEyard:virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. on Networking, 2012, 20 (1): 206- 219.
doi: 10.1109/TNET.2011.2159308 |
| 14 | YANG F, QIN S, XU Z Q, et al Dynamic virtual optical network mapping algorithm with cooperation be-tween nodes and links. Journal of Xidian University, 2018, 45 (4): 63- 68. |
| 15 |
ABDELWAHAB S, HAMDAOUI B, GUIZANI M Efficient virtual network embedding with backtrack avoidance for dynamic wireless networks. IEEE Trans. on Wireless Communications, 2016, 15 (4): 2669- 2683.
doi: 10.1109/TWC.2015.2507134 |
| 16 |
YUN D, OK J, SHIN B, et al Embedding of virtual network requests over static wireless multi hop networks. Computer Networks, 2013, 57 (5): 1139- 1152.
doi: 10.1016/j.comnet.2012.12.006 |
| 17 |
KAIWARTYA O, ABDULLAH A H, CAO Y, et al Virtualization in wireless sensor networks: fault tolerant embedding for Internet of Things. IEEE Internet of Things Journal, 2018, 5 (2): 571- 580.
doi: 10.1109/JIOT.2017.2717704 |
| 18 |
LI M, CHEN C, HUA C, et al Intelligent latency-aware virtual network embedding for industrial wireless networks. IEEE Internet of Things Journal, 2019, 6 (5): 7484- 7496.
doi: 10.1109/JIOT.2019.2900855 |
| 19 | CAO B, XIA S, HE F, et al Research of embedding algorithm for wireless network virtualization. Journal on Communications, 2017, 38 (1): 35- 43. |
| 20 |
YU M, YI Y, REXFORD J, et al Rethinking virtual network embedding: substrate support for path splitting and migration. SIGCOMM Computer Communication Review, 2008, 38 (2): 17- 29.
doi: 10.1145/1355734.1355737 |
| 21 | HAERI S, DING Q Y, LI Z D, et al Global resource capacity algorithm with path splitting for virtual network embedding. Proc. of the IEEE International Symposium on Circuits and Systems, 2016, 666- 669. |
| 22 | ZHAO S H, CHEN K F, LV N, et al A software defined airborne tactical network for aeronautic. Journal on Communications, 2017, 38 (8): 140- 155. |
| 23 | BERA S, MISRA S, VASILAKOS A V Software-defined networking for Internet of Things: a survey. IEEE Internet of Things Journal, 2007, 4 (6): 1994- 2008. |
| 24 | HAN Y, HYUN J, HONG J W Graph abstraction based virtual network management framework for SDN. Proc. of the IEEE Conference on Computer Communications Workshops, 2016, 884- 885. |
| 25 | CORMEN T H, LEISERSON C E, STEIN C, et al. Introduction to algorithms. 2nd ed. Cambridge, USA: McGraw-Hill, 2001. |
| 26 |
SU Y Z, MENG X R, KANG Q Y, et al Survivable virtual network link protection method based on network coding and protection circuit. IEEE Access, 2018, 6, 67477- 67493.
doi: 10.1109/ACCESS.2018.2878797 |
| [1] | Ting CHENG, Xi LI, Qianqian TAN, Yang SU. Adaptive time-space resource and waveform control for collocated MIMO radar with simultaneous multi-beam [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 47-59. |
| [2] | Xilin ZHANG, Yuejin TAN, Zhiwei YANG. Resource allocation optimization of equipment development task based on MOPSO algorithm [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1132-1143. |
| [3] | Mengmeng ZHANG, Honghui CHEN, Junxian LIU. Resource allocation approach to associate business-IT alignment to enterprise architecture design [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 343-351. |
| [4] | Weixu Dai, Weiwei Wu, Bo Yu, and Yunhao Zhu. Success probability orientated optimization model for resource allocation of the technological innovation multi-project system [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1227-1237. |
| [5] | Su Pan, Cheng Li, Sheng Zhang, and Danwei Chen. Cross-layer resource allocation based on equivalent bandwidth in OFDMA systems [J]. Systems Engineering and Electronics, 2016, 27(4): 754-. |
| [6] | Xiaolong Xu, Lingling Cao, and Xinheng Wang. Resource pre-allocation algorithms for low-energy task scheduling of cloud computing [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 457-469. |
| [7] | Xiong Fu and Yeliang Cang. Task scheduling and virtual machine allocation policy in cloud computing environment [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 847-. |
| [8] | Haitao Yuan, Jing Bi, and Bohu Li. Workload-aware request routing in cloud data center using software-defined networking [J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 151-. |
| [9] | Gongbing Bi, Hailing Wang, and Jingjing Ding. Integration of α-fairness with DEA based resource allocation model [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1027-1036. |
| [10] | Tianran Zhou, Huagang Xiong, and Zhen Zhang. Hierarchical resource allocation for integrated modular avionics systems [J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 780-787. |
| [11] |
Jing Li1, Jianhua Ge, Yong Wang, and Ming Gao.
Resource allocation for cooperative diversity systems based on quadrature modulation [J]. Journal of Systems Engineering and Electronics, 2011, 22(2): 327-333. |
| [12] | Bo Wu*, Jun Shen, and Haige Xiang. Resource allocation with minimum transmit power in multicast OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(3): 355-360. |
| [13] | Zhang Chengwen, Liao Minghong, Zhang Zhongzhao & Meng Weixiao. Resource allocation for multiuser STBC-BF MIMO-OFDM downlink with imperfect channel information [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 687-693. |
| [14] | Yi Yang, Li Xiaoxing & Gu Chunqin. Hybrid particle swarm optimization for multiobjective resource allocation [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 959-964. |
| [15] | Zhang Chengwen, Zhang Zhongzhao & Ma Yongkui. Resource allocation with CCI suppression for multiuser MIMO-OFDM downlink in correlated channels [J]. Journal of Systems Engineering and Electronics, 2008, 19(2): 213-219. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||