1 |
BRUNNER D, LEMOINE G, BRUZZONE L. Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48(5): 2403–2420.
|
2 |
MASON D C, SPECK R, DEVEREUX B, et al. Flood detection in urban areas using TerraSAR-X. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48(2): 882–894.
|
3 |
RIDD M K, LIU J J. A comparison of four algorithms for change detection in an urban environment. Remote Sensing of Environment, 1998, 63(2): 95–100.
|
4 |
BAMLER R, HARTL P Synthetic aperture radar interferometry. Inverse Problems, 1998, 14 (4): 1- 54.
|
5 |
GE P L, GOKON H, MEGURO K. A review on synthetic aperture radar-based building damage assessment in disasters. Remote Sensing of Environment, 2020, 240: 111693.
|
6 |
MATSUOKA M, NOJIMA N Building damage estimation by integration of seismic intensity information and satellite L-band SAR imagery. Remote Sensing, 2010, 2 (9): 2111- 2126.
doi: 10.3390/rs2092111
|
7 |
GOKON H, KOSHIMURA S, MEGURO K. Towards a damage assessment in a tsunami affected area using L-band and X-band SAR data. Proc. of the 2017 Joint Urban Remote Sensing Event, 2017: 1–4.
|
8 |
GONG M G, ZHOU Z Q, MA J J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. on Image Processing, 2012, 21(4): 2141–2151.
|
9 |
SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 2004, 13(1): 146–165.
|
10 |
MARIN C, BOVOLO F, BRUZZONE L. Building change detection in multitemporal very high resolution SAR images. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53(5): 2664–2682.
|
11 |
LIU W, YAMAZAKI F. Extraction of collapsed buildings in the 2016 kumamoto earthquake using multi-temporal palsar-2 data. Journal of Disaster Research, 2017, 12(2): 241–250.
|
12 |
JIANG, M, YONG B, TIAN X, et al The potential of more accurate InSAR covariance matrix estimation for land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126, 120- 128.
doi: 10.1016/j.isprsjprs.2017.02.009
|
13 |
LEI L, PERISSIN D, QIN Y X, Change detection with spaceborne InSAR technique in Hong Kong. Proc. of the 2013 IEEE International Geoscience and Remote Sensing Symposium, 2013: 338–341.
|
14 |
JACOB A W, VICENTE-GUIJALBA F, LOPEZ-MARTINEZ C, et al. Sentinel-1 InSAR coherence for land cover mapping: a comparison of multiple feature-based classifiers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 535–552.
|
15 |
LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications. Boca Raton: CRC press, 2017.
|
16 |
FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry. IEEE Trans. on Geoscience and Remote Sensing, 2001, 39(1): 8–20.
|
17 |
PERISSIN D, FERRETTI A. Urban-target recognition by means of repeated spaceborne SAR images. IEEE Trans. on Geoscience and Remote Sensing, 2007, 45(12): 4043–4058.
|
18 |
ZHANG L, DING X L, LU Z. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1): 146–152.
|
19 |
ZHANG L. Temporarily coherent point SAR interferometry. Hong Kong, China: Hong Kong Polytechnic University, 2012.
|
20 |
DOGAN O, PERISSIN D. Detection of multitransition abrupt changes in multitemporal SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3239–3247.
|
21 |
ANSARI H. Bayesian inference, applications in persistent scatterer interferometric SAR. Munich, Germany: Technical University of Munich, 2013.
|
22 |
HU F M, WU J C, CHANG L, et al. Incorporating temporary coherent scatterers in multi-temporal InSAR using adaptive temporal subsets. IEEE Trans. on Geoscience and Remote Sensing, 2019, 57(10): 7658–7670.
|
23 |
HU F M, WU J C. Spatial-temporal change detection in urban area using adaptive temporal subset multi-temporal insar method. Proc. of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, 2019: 1–6.
|
24 |
YANG C H, KENDUIYWO B, SOERGEL U Spatiotemporal change detection based on persistent scatterer interferometry: a case study of monitoring building changes. Photogrammetric Engineering and Remote Sensing, 2018, 84, 309- 328.
doi: 10.14358/PERS.84.5.309
|
25 |
WU J C, HU F M. Monitoring ground subsidence along the shanghai maglev zone using TerraSAR-X images. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 117–121.
|
26 |
HANSSEN R F. Radar interferometry: data interpretation and error analysis. Dordrecht: Kluwer Academic Publishers, 2001.
|
27 |
STUBER G L. Principles of mobile communication. Switzerland: Springer, 2017.
|
28 |
COCHRAN W G The χ2 test of goodness of fit . The Annals of Mathematical Statistics, 1952, 23 (3): 315- 345.
doi: 10.1214/aoms/1177729380
|
29 |
KETELAAR V B H. Monitoring surface deformation induced by hydrocarbon production using satellite radar interferometry. Delft, The Netherlands: Delft University of Technology, 2008.
|
30 |
LEIJEN F J. Persistent scatterer interferometry based on geodetic estimation theory. Delft, The Netherlands: Delft University of Technology, 2014.
|
31 |
SIDDIQUI M. Statistical inference for Rayleigh distributions. Journal of Research of the National Bureau of Standards, 1964, 68(9): 1007–1013.
|
32 |
KAMPES B M, HANSSEN R F. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(11): 2446–2453.
|
33 |
HU F M, WU J C. Improvement of the multi-temporal InSAR method using reliable arc solutions. International Journal of Remote Sensing, 2018, 39(10): 3363–3385.
|
34 |
OTSU N. A threshold selection method from gray-level histograms. IEEE Trans. on Systems, Man, and Cybernetics, 1979, 9(1): 62–66.
|
35 |
LIOYD S P. Least squares quantization in pcm. IEEE Trans. on Information Theory, 1982, 28(2): 129–137.
|