Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (6): 1270-1283.doi: 10.23919/JSEE.2021.000108
• RADAR DIFFERENTIAL INTERFEROMETRY TECHNIQUES AND APPLICATIONS • Previous Articles Next Articles
Rui ZHANG1,2(), Wei XIANG1(), Guoxiang LIU1,2,*(), Xiaowen WANG1(), Wenfei MAO1(), Yin FU1(), Jialun CAI1(), Bo ZHANG1()
Received:
2021-03-30
Online:
2022-01-05
Published:
2022-01-05
Contact:
Guoxiang LIU
E-mail:zhangrui@swjtu.edu.cn;xw_swjtu@foxmail.com;rsgxliu@swjtu.edu.cn;insarwxw@gmail.com;wenfeimao@my.swjtu.edu.cn;rsyinfu@my.swjtu.edu.cn;caijialun@my.swjtu.edu.cn;rsbozh@gmail.com
About author:
Supported by:
Rui ZHANG, Wei XIANG, Guoxiang LIU, Xiaowen WANG, Wenfei MAO, Yin FU, Jialun CAI, Bo ZHANG. Interferometric coherence and seasonal deformation characteristics analysis of saline soil based on Sentinel-1A time series imagery[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1270-1283.
Table 2
Coordinates of the feature target points"
Point number | Latitude/°N | Longitude/°E |
T1 | 35.0971 | 51.1593 |
T2 | 35.0451 | 51.1504 |
T3 | 35.0182 | 51.1507 |
T4 | 34.9029 | 51.1413 |
T5 | 35.0562 | 51.1276 |
T6 | 35.0199 | 51.1432 |
T7 | 35.0293 | 51.0821 |
T8 | 35.0104 | 51.0743 |
T9 | 34.9151 | 51.1210 |
T10 | 34.9390 | 51.0849 |
T11 | 34.9474 | 51.0865 |
T12 | 34.9610 | 51.0226 |
1 |
CASTELLAZZI G, COLLA C, MIRANDA S, et al A coupled multiphase model for hygrothermal analysis of masonry structures and prediction of stress induced by salt crystallization. Construction and Building Materials, 2013, 41, 717- 731.
doi: 10.1016/j.conbuildmat.2012.12.045 |
2 | KONSTA-GDOUTOS M S. Monitoring and modeling concrete properties. Netherlands: Springer, 2006. |
3 |
STIPHO A S On the engineering properties of salina soil. Quarterly Journal of Engineering Geology and Hydrogeology, 1985, 18 (2): 129- 137.
doi: 10.1144/GSL.QJEG.1985.018.02.02 |
4 | BAO W X, YANG X H, XIE Y L Research on salt expansion of representative crude saline soil under freezing and thawing cycles. Chinese Journal of Geotechnical Engineering, 2006, 28 (11): 1991- 1995. |
5 |
BING H, HE P, ZHANG Y Cyclic freeze–thaw as a mechanism for water and salt migration in soil. Environ Earth Science, 2015, 74 (1): 675- 681.
doi: 10.1007/s12665-015-4072-9 |
6 | BROUCHKOV A. Frozen saline soils of the Arctic coast: their distribution and engineering properties. Proc. of the 8th International Conference on Permafrost, 2003: 95−100. |
7 |
BIGGAR K W, SEGO D C The strength and deformation behaviour of model adfreeze and grouted piles in saline frozen soils. Canadian Geotechnical Journal, 1993, 30 (2): 319- 337.
doi: 10.1139/t93-027 |
8 |
ARENSON L U, SEGO D C The effect of salinity on the freezing of coarse-grained sands. Canadian Geotechnical Journal, 2006, 43 (3): 325- 337.
doi: 10.1139/t06-006 |
9 | BAO W X. Study on engineering properties and engineering classification of inland Saline. Xi’an: Chang’an University, 2009. (in Chinese) |
10 |
STEIGER M, ASMUSSEN S Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H 2O and the generation of stress . Geochimica Et Cosmochimica Acta, 2008, 72 (17): 4291- 4306.
doi: 10.1016/j.gca.2008.05.053 |
11 |
LAI Y M, WU D Y, ZHANG M Y Crystallization deformation of a saline soil during freezing and thawing processes. Applied Thermal Engineering, 2017, 120, 463- 473.
doi: 10.1016/j.applthermaleng.2017.04.011 |
12 | BING H, HE P Influence of freeze-thaw cycles on physical and mechanical properties of salty soil. Chinese Journal of Geotechnical Engineering, 2009, 31 (12): 1958- 1962. |
13 |
WU Q B, ZHU Y L Experimental studies on salt expansion for coarse grain soil under constant temperature. Cold Regions Science and Technology, 2002, 34 (2): 59- 65.
doi: 10.1016/S0165-232X(01)00048-9 |
14 | ZHANG Y, FANG J H, LIU J K, et al Experimental research on physical properties of saline soil subgrade filler in Chaerhan region. Sciences in Cold and Arid Regions, 2015, 7 (3): 212- 215. |
15 | ZHANG Y, LIU J K, FANG J H, et al Deformation properties of chloride saline soil under action of a low-temperature environment and different loads. Sciences in Cold and Arid Regions, 2017, 9 (3): 307- 311. |
16 |
WANG D Y, LIU J K, LI X Numerical simulation of coupled water and salt transfer in soil and a case study of the expansion of subgrade composed by saline soil. Procedia Engineering, 2016, 143, 315- 322.
doi: 10.1016/j.proeng.2016.06.040 |
17 | TAN D S, SUN Y M, HU L X, et al Salt expansion properties and mechanism of saline soil in Xinjiang section of Lanzhou-Xinjiang railway and preventive measures. Journal of the China Railway Society, 2011, 33 (9): 83- 88. |
18 | LIU G X, DING X L, CHEN Y Q, et al New and potential technology for observation of earth from space: synthetic aperture radar interferometry. Advance in Earth Sciences, 2000, 15 (6): 734- 740. |
19 |
MASSONNET D, ROSSI M, CARMONA C, et al The displacement field of the landers earthquake mapped by radar interferometry. Nature, 1993, 364, 138- 142.
doi: 10.1038/364138a0 |
20 |
FERRETTI A, PRATI C, ROCCA F Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38 (5): 2202- 2212.
doi: 10.1109/36.868878 |
21 |
BERARDINO P, FORNARO G, LANARI R, et al A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. on Geoscience and Remote Sensing, 2002, 40 (11): 2375- 2383.
doi: 10.1109/TGRS.2002.803792 |
22 | FAYAZI F. Sedimentological studies in the Qom area Central Iran: a, evaporites of the Howz-e-Soltan lake basin; b, sedimentology, diagenesis and porosity of the Qom formation. Norfolk, UK: University of East Anglia, 1991. |
23 | LAK R, TURKAMANI S M, LANGEROUDI S R Investigation of hydrogeochemical characteristics and groundwater quality of Hoz–e–Soltan Lake, Qom, Iran. Journal of Tethys, 2013, 1 (3): 189- 198. |
24 | CHEN Y, PENNA N T, LI Z H. Generation of real-time mode high-resolution water vapor fields from GPS observations. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 2008–2025. |
25 | CHEN Y, LI Z H, PENNA N T Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sensing of Environment, 2017, 204, 109- 121. |
26 | PERISSIN D, WANG T Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans. on Geoscience & Remote Sensing, 2011, 50 (1): 271- 280. |
27 |
ZEBKER H A, VILLASENOR J Decorrelation in interferometric radar echoes. IEEE Trans. on Geoscience and Remote Sensing, 1992, 30 (5): 950- 959.
doi: 10.1109/36.175330 |
28 | ZHANG Y J, FATTAHI H, AMELUNG F Small baseline InSAR time series analysis: unwrapping error correction and noise reduction. Computers & Geosciences, 2019, 133, 104331. |
29 |
ANSARI H, ZAN F D, BAMLER R Efficient phase estimation for interferogram stacks. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (7): 4109- 4125.
doi: 10.1109/TGRS.2018.2826045 |
30 |
FERRETTI A, FUMAGALLI A, NOVALI F, et al A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (9): 3460- 3470.
doi: 10.1109/TGRS.2011.2124465 |
31 |
ANSARI H, ZAN F D, BAMLER R Sequential estimator: toward efficient InSAR time series analysis. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (10): 5637- 5652.
doi: 10.1109/TGRS.2017.2711037 |
32 |
SAMIEI-ESFAHANY S, MARTINS J E, LEIJEN F V, et al Phase estimation for distributed scatterers in InSAR stacks using integer least squares estimation. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (10): 5671- 5687.
doi: 10.1109/TGRS.2016.2566604 |
33 | COSTANTINI M A novel phase unwrapping method based on network programming. IEEE Trans. on Geoscience and Remote Sensing, 1997, 36 (3): 813- 821. |
34 | SEYMOUR M S, CUMMING I G. Maximum likelihood estimation for SAR interferometry. Proc. of the Geoscience and Remote Sensing Symposium, 1994: 8–12. |
35 |
PEPE A, LANARI R On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. on Geoscience and Remote Sensing, 2006, 44 (9): 2374- 2383.
doi: 10.1109/TGRS.2006.873207 |
36 |
ZHAO R, LI Z W, FENG G C, et al Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic factors modeling. Remote Sensing of Environment, 2016, 184, 276- 287.
doi: 10.1016/j.rse.2016.07.019 |
[1] | Leilei Kou, Xiaoqing Wang, Maosheng Xiang, and Minhui Zhu. High sidelobe effects on interferometric coherence for circular SAR imaging geometry [J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 76-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||