Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 1143-1151.doi: 10.23919/JSEE.2021.000098
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Kai ZHOU1,2, Daojing LI1,*(), Anjing CUI1,2(), Dong HAN1,2(), He TIAN3(), Haifeng YU4(), Jianbo DU4(), Lei LIU4(), Yu ZHU4(), Running ZHANG4()
Received:
2020-07-27
Online:
2021-10-18
Published:
2021-11-08
Contact:
Daojing LI
E-mail:lidj@mail.ie.ac.cn;ajcui@qq.com;handong17@mails.ucas.edu.cn;tianhe0407@126.com;castyu2@126.com;jianbodu.sky@outlook.com;liulei211@163.com;zhuyubit@163.com;13661051645@139.com
About author:
Supported by:
Kai ZHOU, Daojing LI, Anjing CUI, Dong HAN, He TIAN, Haifeng YU, Jianbo DU, Lei LIU, Yu ZHU, Running ZHANG. Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1143-1151.
Table 1
3-D imaging simulation parameters of spaceborne sparse flight in side-look model"
Parameter | Value |
Wave length | 0.03 |
System bandwidth | 150 |
Reference platform height | 500 |
Incident angle | 30 |
Spaceborne platform speed | 7 |
Minimum sampling interval | 110 |
Equivalent aperture length of cross-track | 4.84 |
Theoretical cross-track resolution | 1.78 |
Unambiguous range of cross-track | 79 |
Actual range | 1 |
Actual azimuth resolution | 2.2 |
Sparse flight orbit times | 23/24 |
Multiple of cross-track up-sampling | 64 |
1 | WILEY C A Synthetic aperture radars. IEEE Trans. on Aerospace and Electronic Systems, 1985, 21 (3): 440- 443. |
2 | GIRET R, JEULAND H, ENERT P A study of 3D-SAR concept for a millimeter wave imaging radar onboard an UAV. Proc. of the European Radar Conference, 2005, 201- 204. |
3 |
WANG S Z, FANG Y, ZHANG J G, et al Near-field 3D imaging approach combining MJSR and FGG-NUFFT. Journal of Systems Engineering and Electronics, 2019, 30 (6): 1096- 1109.
doi: 10.21629/JSEE.2019.06.06 |
4 | HONG W, WANG Y P, LIN Y, et al Research progress on three-dimensional SAR imaging techniques. Journal of Radars, 2018, 7 (6): 633- 654. |
5 |
PETERSON E H, FOTOPOULOS G, ZEE R E A feasibility assessment for low-cost InSAR formation-flying microsatellites. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47 (8): 2847- 2858.
doi: 10.1109/TGRS.2009.2017521 |
6 | ZINK M, BARTUSCH M, MILLER D. TanDEM-X mission status. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2012: 1896−1899. |
7 | TRIDON D B, BACHMANN M, BOER J, et al. TanDEM-X going for the DEM: acquisition, performance, and further activities. Proc. of the IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, 2015: 163−168. |
8 | REIGBER A, MOREIRA A, PAPATHANASSIOU K P. First demonstration of airborne SAR tomography using multi baseline L-band data. IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(1):44−46. |
9 |
CANDES E J, WAKIN M B An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25 (2): 21- 30.
doi: 10.1109/MSP.2007.914731 |
10 | CANDES E Compressive sampling. Proc. of the International Congress of Mathematicians, 2006, 1- 20. |
11 |
DONOHO D L Compressed sensing. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
12 | XU H P Baseline analysis and design for distributed spaceborne inteferometric SAR. Journal of Electronics and Information Technology, 2003, 25 (9): 1194- 1199. |
13 |
ZHU X X, BAMLER R Very high resolution spaceborne SAR tomography in urban environment. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (12): 4296- 4308.
doi: 10.1109/TGRS.2010.2050487 |
14 | ZHU X X, BAMLER R Sparse tomographic SAR reconstruction from mixed TerraSAR-X/TanDEM-X data stacks. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2012, 7468- 7471. |
15 | BAMLER R, ZHU X X Let’s do the time warp: multicomponent nonlinear motion estimation in differential SAR tomography. IEEE Geoscience & Remote Sensing Letters, 2011, 8 (4): 735- 739. |
16 |
GE N, ZHU X X Bistatic-like differential SAR tomography. IEEE Trans. on Geoscience and Remote Sensing, 2019, 57 (8): 5883- 5893.
doi: 10.1109/TGRS.2019.2902814 |
17 |
TIAN H, LI D J Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (10): 1395- 1399.
doi: 10.1109/LGRS.2016.2560238 |
18 | TIAN H, LI D J Sparse sampling-based microwave 3-D imaging using interferometry and frequency-domain principal component analysis. IET Radar, Sonar & Navigation, 2017, 11 (12): 1886- 1891. |
19 | LI L C, LI D J Sparse array SAR 3D imaging for continuous scene based on compressed sensing. Journal of Electronics and Information Technology, 2014, 36 (9): 2166- 2172. |
20 |
LI L C, LI D J, PAN Z H Compressed sensing application in interferometric synthetic aperture radar. Science China-Information Sciences, 2017, 60 (10): 102305.
doi: 10.1007/s11432-016-9017-6 |
21 | TIAN H, LI D J Motion compensation and 3-D imaging algorithm in sparse flight based airborne array SAR. Journal of Radars, 2018, 7 (6): 717- 729. |
22 |
MOORE B Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. on Automatic Control, 1981, 26 (1): 17- 32.
doi: 10.1109/TAC.1981.1102568 |
23 | MA Y Z, CHEN N, XIONG X L Wind shear warning algorithm based on PCA and phase difference correction. Systems Engineering and Electronics, 2020, 42 (1): 52- 60. |
24 | TIAN H, YU H F, ZHU Y, et al Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing. Journal of Electronics and Information Technology, 2020, 42 (8): 201- 2028. |
25 |
GOLOMB S W, SCHOLTZ R A Generalized barker sequences. IEEE Trans. on Information Theory, 1965, 11 (4): 533- 537.
doi: 10.1109/TIT.1965.1053828 |
26 | HOLUBNYCHYI A. Generalized binary barker sequences and their application to radar technology. Proc. of the IEEE Signal Processing Symposium, 2013: 1−9. |
27 |
TENG X M, LI D J Downward-looking 3D imaging processing for airborne cross-track sparse array radar. Journal of Electronics and Information Technology, 2012, 34 (6): 1311- 1317.
doi: 10.3724/SP.J.1146.2011.00739 |
28 | ROSEN P A, HENSLEY S, JOUGHIN I R, et al Synthetic aperture radar interferometry. Proceedings of the IEEE, 2002, 88 (3): 333- 382. |
29 | ZHANG T, YANG B. Big data dimension reduction using PCA. Proc. of the IEEE International Conference on Smart Cloud, 2016: 152−157. |
30 |
KHAN M D S, APPINA B A, CHANNAPPAYYA S S Full-reference stereo image quality assessment using natural stereo scene statistics. IEEE Signal Processing Letters, 2015, 22 (11): 1985- 1989.
doi: 10.1109/LSP.2015.2449878 |
[1] | Jing FANG, Shaohai HU, Xiaole MA. SAR image de-noising via grouping-based PCA and guided filter [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 81-91. |
[2] | Yang Fang, Baoping Wang, Chao Sun, Zuxun Song, and Shuzhen Wang. Near field 3-D imaging approach for joint high-resolution imaging and phase error correction [J]. Systems Engineering and Electronics, 2017, 28(2): 199-211. |
[3] | Jianfei Ding, Guangya Si, Baoqiang Li, Jingyu Yang, and Yu Zhang. Construction of composite indicator system based on simulation data mining [J]. Systems Engineering and Electronics, 2017, 28(1): 81-. |
[4] | Ke Zhang, Yintao Zhang, and Pinpin Qu. Comprehensive multivariate grey incidence degree based on principal component analysis [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 840-847. |
[5] | Wang Jinfeng & Pi Yiming. SAR tomography imaging via higher-order spectrum analysis [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 748-754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||