Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 1180-1199.doi: 10.23919/JSEE.2021.000101
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Husheng WU1(), Hao LI2(), Renbin XIAO3,*()
Received:
2020-08-04
Online:
2021-10-18
Published:
2021-11-04
Contact:
Renbin XIAO
E-mail:wuhusheng0421@163.com;afeu_li@163.com;rbxiao@hust.edu.cn
About author:
Supported by:
Husheng WU, Hao LI, Renbin XIAO. A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1180-1199.
Table 1
Algorithm performance comparison in situation A"
Cost function | The algorithm of this paper | Bee colony labor division | Ant colony labor division | Algorithm in [ | Algorithm in [ | Algorithm in [ |
Min | 77.3205 | 82.5620 | 83.3530 | 79.6902 | 79.3347 | 77.9551 |
Average | 78.3763 | 82.9944 | 84.3801 | 80.0487 | 80.2851 | 79.0156 |
Variance | 1.3537 | 1.6286 | 1.9977 | 1.4713 | 1.5642 | 1.1135 |
Time-consuming | 0.5377 | 1.3499 | 1.6715 | 0.8864 | 0.8637 | 2.0991 |
Table 2
Algorithm performance comparison in situation B"
Cost function | The algorithm of this paper | Bee colony labor division | Ant colony labor division | Algorithm in [ | Algorithm in [ | Algorithm in [ |
Min | 42.8168 | 46.1087 | 46.0672 | 43.7242 | 43.3587 | 43.0057 |
Average | 43.0036 | 46.3920 | 46.4903 | 44.3134 | 44.3390 | 43.3505 |
Variance | 1.0816 | 2.5849 | 1.2977 | 0.9302 | 0.8053 | 1.2326 |
Time-consuming | 0.3188 | 0.7873 | 0.8093 | 0.5305 | 0.5968 | 1.165 8 |
Table 3
Algorithm performance comparison in situation C"
Cost function | The algorithm of this paper | Bee colony labor division | Ant colony labor division | Algorithm in [ | Algorithm in [ | Algorithm in [ |
Min | 53.2255 | 57.4162 | 58.7066 | 53.6427 | 53.3404 | 53.3354 |
Average | 53.9264 | 58.7420 | 59.4014 | 54.3888 | 54.4026 | 54.2643 |
Variance | 1.7927 | 2.8647 | 3.3160 | 1.6347 | 1.6094 | 1.8479 |
Time-consuming | 1.5545 | 2.1977 | 2.7015 | 2.0187 | 2.0679 | 4.257 3 |
1 |
SHEN H, LIU G, CHANDLER H Swarm intelligence based file replication and consistency maintenance in structured P2P file sharing systems. IEEE Trans. on Computers, 2015, 64 (10): 2953- 2967.
doi: 10.1109/TC.2015.2389845 |
2 | GANDOMI A H, KASHANI A R Construction cost minimization of shallow foundation using recent swarm intelligence techniques. IEEE Trans. on Industrial Informatics, 2017, 14 (3): 1099- 1106. |
3 |
WANG S Q, XING J C, JIANG Z Y, et al A decentralized swarm intelligence algorithm for global optimization of HVAC system. IEEE Access, 2019, 7, 64744- 64757.
doi: 10.1109/ACCESS.2019.2913359 |
4 | KANG Q, ZHOU M C, AN J, et al Swarm intelligence approaches to optimal power flow problem with distributed generator failures in power networks. IEEE Trans. on Automation Science and Engineering, 2012, 10 (2): 343- 353. |
5 | SLOWIK A, KWASNICKA H Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Trans. on Industrial Informatics, 2017, 14 (3): 1004- 1015. |
6 | HU J Q, WU H S, ZHONG B, et al. Swarm intelligence-based optimization algorithms: an overview and future research issues. International Journal of Automation and Control, 2020, 14(5):656−693. |
7 |
HU X M, ZHANG J, CHUNG H S H, et al SamACO: variable sampling ant colony optimization algorithm for continuous optimization. IEEE Trans. on Systems, Man and Cybernetics, Part B (Cybernetics), 2010, 40 (6): 1555- 1566.
doi: 10.1109/TSMCB.2010.2043094 |
8 | KENNEDY J, EBERHART R. Particle swarm optimization. Proc. of the IEEE International Conference on Neural Networks, 1995:1942−1948. |
9 |
HUANG S J, LIU X Z, SU W F, et al Application of enhanced honey-bee mating optimization algorithm to fault section estimation in power systems. IEEE Trans. on Power Delivery, 2013, 28 (3): 1944- 1951.
doi: 10.1109/TPWRD.2013.2264142 |
10 |
FENG Y, ZHAO S, LIU H Analysis of network coverage optimization based on feedback K-means clustering and artificial fish swarm algorithm. IEEE Access, 2020, 8, 42864- 42876.
doi: 10.1109/ACCESS.2020.2970208 |
11 |
NAUG D From division of labor to collective behavior: behavioral analyses at different levels. Behavioral Ecology and Sociobiology, 2016, 70 (7): 1113- 1115.
doi: 10.1007/s00265-016-2092-4 |
12 |
ROBINSON G E Regulation of division of labor in insect societies. Annual Review of Entomology, 1992, 37 (1): 637- 665.
doi: 10.1146/annurev.en.37.010192.003225 |
13 |
XIAO R, WANG Y Labour division in swarm intelligence for allocation problems: a survey. International Journal of Bio-Inspired Computation, 2018, 12 (2): 71- 86.
doi: 10.1504/IJBIC.2018.094186 |
14 | GAO W F, HUANG L L, LIU S Y, et al Artificial bee colony algorithm based on information learning. IEEE Trans. on Systems, Man, and Cybernetics, 2015, 45 (12): 2827- 2839. |
15 | ZHANG Z S, LONG K P, WANG J P, et al On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys and Tutorials, 2013, 16 (1): 513- 537. |
16 | JIANG C B, CHEN T G, LI R L, et al Construction of extended ant colony labor division model for traffic signal timing and its application in mixed traffic flow model of single intersection. Concurrency and Computation: Practice and Experience, 2020, 32 (7): e5592. |
17 |
WANG Y C, XIAO R B An ant colony based resilience approach to cascading failures in cluster supply network. Physica A: Statistical Mechanics and its Applications, 2016, 462, 150- 166.
doi: 10.1016/j.physa.2016.06.058 |
18 |
RAVARY F, LECOUTEY E, KAMINSKI G, et al Individual experience alone can generate lasting division of labor in ants. Current Biology, 2007, 17 (15): 1308- 1312.
doi: 10.1016/j.cub.2007.06.047 |
19 |
WU H S, LI H, XIAO R B, et al Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm. Physica A: Statistical Mechanics and its Applications, 2018, 491, 127- 141.
doi: 10.1016/j.physa.2017.08.094 |
20 |
HUANG L W, QU H, ZUO L Multi-type UAVs cooperative task allocation under resource constraints. IEEE Access, 2018, 6, 17841- 17850.
doi: 10.1109/ACCESS.2018.2818733 |
21 |
CHEN Y B, YANG D, YU J Q Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (6): 2853- 2872.
doi: 10.1109/TAES.2018.2831138 |
22 |
ZHU M N, DU X X, ZHANG X H, et al Multi-UAV rapid-assessment task-assignment problem in a post-earthquake scenario. IEEE Access, 2019, 7, 74542- 74557.
doi: 10.1109/ACCESS.2019.2920736 |
23 |
ZHOU Z Y, FENG J H, GU B, et al When mobile crowd sensing meets UAV: energy-efficient task assignment and route planning. IEEE Trans. on Communications, 2018, 66 (11): 5526- 5538.
doi: 10.1109/TCOMM.2018.2857461 |
24 |
MOTLAGH N H, BAGAA M, TALEB T Energy and delay aware task assignment mechanism for UAV-based IoT platform. IEEE Internet of Things Journal, 2019, 6 (4): 6523- 6536.
doi: 10.1109/JIOT.2019.2907873 |
25 |
LIU D, WANG J, XU K, et al Task-driven relay assignment in distributed UAV communication networks. IEEE Trans. on Vehicular Technology, 2019, 68 (11): 11003- 11017.
doi: 10.1109/TVT.2019.2942095 |
26 |
FU X W, FENG P, GAO X G Swarm UAVs task and resource dynamic assignment algorithm based on task sequence mechanism. IEEE Access, 2019, 7, 41090- 41100.
doi: 10.1109/ACCESS.2019.2907544 |
27 | DUAN X J, LIU H Y, TANG H, et al A novel hybrid auction algorithm for multi-UAVs dynamic task assignment. IEEE Access, 2019, 8, 86207- 86222. |
28 |
CHENG L H, ZHONG L, TIAN S S, et al Task assignment algorithm for road patrol by multiple UAVs with multiple bases and rechargeable endurance. IEEE Access, 2019, 7, 144381- 144397.
doi: 10.1109/ACCESS.2019.2944881 |
29 |
AMDAM G V, OMHOLT S W The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology, 2003, 223 (4): 451- 464.
doi: 10.1016/S0022-5193(03)00121-8 |
30 |
NAUG D, GADAGKAR R Flexible division of labor mediated by social interactions in an insect colony—a simulation model. Journal of Theoretical Biology, 1999, 197 (1): 123- 133.
doi: 10.1006/jtbi.1998.0862 |
31 | BESHERS S N, HUANG Z Y, OONO Y, et al. Social inhibition and the regulation of temporal polyethism in honey bees. Journal of Theoretical Biology, 2001, 213(3): 461−479. |
32 | ZAHADAT P, CRAVSCHEIM K, SCHMICK T, et al. Social inhibition managements division of labour in artificial swarm system. Proc. of the 12th European Concentration on Artificial Life, 2013: 609–616. |
33 |
FU Z J, MAO Y H, HE D J, et al Secure multi-UAV collaborative task allocation. IEEE Access, 2019, 7, 35579- 35587.
doi: 10.1109/ACCESS.2019.2902221 |
34 |
HU J W, JIANG M, ZHANG Q, et al Joint optimization of UAV position, time slot allocation, and computation task partition in multiuser aerial mobile-edge computing systems. IEEE Trans. on Vehicular Technology, 2019, 68 (7): 7231- 7235.
doi: 10.1109/TVT.2019.2915836 |
35 |
ARAFAT M Y, MOH S Localization and clustering based on swarm intelligence in UAV networks for emergency communications. IEEE Internet of Things Journal, 2019, 6 (5): 8958- 8976.
doi: 10.1109/JIOT.2019.2925567 |
36 |
KOUSHIK A M, HU F, KUMAR S Deep Q-learning-based node positioning for throughput-optimal communications in dynamic UAV swarm network. IEEE Trans. on Cognitive Communications and Networking, 2019, 5 (3): 554- 566.
doi: 10.1109/TCCN.2019.2907520 |
37 |
MUKHERJEE A, MISRA S, CHANDRA V S P, et al Resource-optimized multiarmed bandit-based offload path selection in edge UAV swarms. IEEE Internet of Things Journal, 2019, 6 (3): 4889- 4896.
doi: 10.1109/JIOT.2018.2879459 |
38 |
DONG X W, LI Y F, LU C, et al Time-varying formation tracking for UAV swarm systems with switching directed topologies. IEEE Trans. on Neural Networks, 2019, 30 (12): 3674- 3685.
doi: 10.1109/TNNLS.2018.2873063 |
39 |
ISCOLD P, PEREIRA G A S, TORRES L A B Development of a hand-launched small UAV for ground reconnaissance. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (1): 335- 348.
doi: 10.1109/TAES.2010.5417166 |
40 |
BAZI Y, MELGANI F Convolutional SVM networks for object detection in UAV imagery. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (6): 3107- 3118.
doi: 10.1109/TGRS.2018.2790926 |
41 |
DONG C X, CHANG X A novel scattered wave deception jamming against three channel SAR GMTI. IEEE Access, 2018, 6, 53882- 53889.
doi: 10.1109/ACCESS.2018.2871518 |
42 |
LIU H, YOO S J, KWAK K S Opportunistic relaying for low-altitude UAV swarm secure communications with multiple eavesdroppers. Journal of Communications and Networks, 2018, 20 (5): 496- 508.
doi: 10.1109/JCN.2018.000074 |
43 |
SURESH M, GHOSE D UAV grouping and coordination tactics for ground attack missions. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (1): 673- 692.
doi: 10.1109/TAES.2012.6129663 |
44 | LEE J H, KIM J W, SONG J Y, et al A novel memetic algorithm using modified particle swarm optimization and mesh adaptive direct search for PMSM design. IEEE Trans. on Magnetics, 2015, 52 (3): 1- 4. |
45 |
LI J C, LI L A hybrid genetic algorithm based on information entropy and game theory. IEEE Access, 2020, 8, 36602- 36611.
doi: 10.1109/ACCESS.2020.2971060 |
46 | WANG L, ZHANG X, ZHANG X Antenna array design by artificial bee colony algorithm with similarity induced search method. IEEE Trans. on Magnetics, 2019, 55 (6): 1- 4. |
47 |
MA Y N, GONG Y J, XIAO C F, et al Path planning for autonomous underwater vehicles: an ant colony algorithm incorporating alarm pheromone. IEEE Trans. on Vehicular Technology, 2019, 68 (1): 141- 154.
doi: 10.1109/TVT.2018.2882130 |
48 | CASTILLO-CAGIGAL M, MATALLANAS E, NAVARRO I, et al Variable threshold algorithm for division of labor analyzed as a dynamical system. IEEE Trans. on Systems, Man, and Cybernetics, 2014, 44 (12): 2242- 2252. |
49 |
DU J An evolutionary game coordinated control approach to division of labor in multi-agent systems. IEEE Access, 2019, 7, 124295- 124308.
doi: 10.1109/ACCESS.2019.2938254 |
50 | YU X, CHEN W N, GU T, et al ACO-A*: ant colony optimization plus A* for 3-D traveling in environments with dense obstacles. IEEE Trans. on Evolutionary Computation, 2018, 23 (4): 617- 631. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||