Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 1130-1142.doi: 10.23919/JSEE.2021.000097
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Cunxiang XIE1(), Limin ZHANG1(), Zhaogen ZHONG2,*()
Received:
2020-12-16
Online:
2021-10-18
Published:
2021-11-04
Contact:
Zhaogen ZHONG
E-mail:932304145@qq.com;iamzlm@163.com;zhongzhaogen@163.com
About author:
Supported by:
Cunxiang XIE, Limin ZHANG, Zhaogen ZHONG. Quasi-LFM radar waveform recognition based on fractional Fourier transform and time-frequency analysis[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1130-1142.
Table 1
Modulation phase of six kinds of quasi-LFM signals"
Code type | Definition of |
LFM | |
Frank | |
P1 | |
P2 | |
P3 | |
P4 | |
1 |
QU Z Y, WANG W Y, HOU C B, et al Radar signal intra-pulse modulation recognition based on convolutional denoising autoencoder and deep convolutional neural network. IEEE Access, 2019, 7, 112339- 112347.
doi: 10.1109/ACCESS.2019.2935247 |
2 |
THOKALA R K, DEERGHA R K Automatic intrapulse modulation classification of advanced LPI radar waveforms. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (2): 901- 914.
doi: 10.1109/TAES.2017.2667142 |
3 |
LI D J, YANG R J, LI X B, et al Radar signal modulation recognition based on deep joint learning. IEEE Access, 2020, 8, 48515- 48528.
doi: 10.1109/ACCESS.2020.2978875 |
4 |
NANDI A K, AZZOUZ E E Algorithms for automatic modulation recognition of communication signals. IEEE Trans. on Communications, 1998, 46 (4): 431- 436.
doi: 10.1109/26.664294 |
5 |
NANDI A K, AZZOUZ E E Automatic analogue modulation recognition. Signal Processing, 1995, 46 (2): 211- 222.
doi: 10.1016/0165-1684(95)00083-P |
6 |
RAVIER P, AMBLARD P O Wavelet packets and de-noising based on higher-order-statistics for transient detection. Signal Processing, 2001, 81 (9): 1909- 1926.
doi: 10.1016/S0165-1684(01)00088-3 |
7 |
SWAMI A, SADLER B M Hierarchical digital modulation classification using cumulants. IEEE Trans. on Communications, 2000, 48 (3): 416- 429.
doi: 10.1109/26.837045 |
8 | DOBRE O A, BARNESS Y, SU W Higher-order cyclic cumulants for high order modulation classification. Proc. of the Military Communications Conference, 2003, 112- 117. |
9 | LIU L T, DAI L J, CHEN T Radar signal modulation recognition based on spectrum complexity. Journal of Harbin Engineering University, 2018, 39 (6): 1081- 1086. |
10 |
ZHANG Y X, HONG R J, PAN P P, et al Frequency-domain range sidelobe correction in stretch processing for wideband LFM radars. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (1): 111- 121.
doi: 10.1109/TAES.2017.2649278 |
11 | MA J, HUANG G, MZUO W, et al Robust radar waveform recognition algorithm based on random projections and sparse classification. IET Radar, Sonar & Navigatation, 2014, 8 (4): 290- 296. |
12 |
LOPEZ-RISUENO G, GRAJAL J, SANZ-OSORIO A Digital channelized receiver based on time-frequency analysis for signal interception. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (3): 879- 898.
doi: 10.1109/TAES.2005.1541437 |
13 |
LOPEZ-RISUENO G, GRAJAL J, YESTE-OJEDA O Atomic decomposition-based radar complex signal interception. IEE Proceedings—Radar, Sonar and Navigation, 2003, 150 (4): 323- 331.
doi: 10.1049/ip-rsn:20030680 |
14 | HUANG Y, LIU F, WANG Z Z Chirp function sparse feature extraction and sorting of radar signals based on FRFT. Acta Aeronautica et Astronautica Sinica, 2013, 34 (2): 393- 400. |
15 | QU Z Y, MAO X J, HOU C B Radar signal recognition based on singular value entropy and fractal dimension. Systems Engineering and Electronics, 2018, 40 (2): 303- 307. |
16 |
ZHANG M, LIU L T, DIAO M LPI radar waveform recognition based on time-frequency distribution. Sensors, 2016, 16 (10): 1682.
doi: 10.3390/s16101682 |
17 |
LI Y J, XIAO P, WU H C, et al LPI radar signal detection based on radial integration of Choi-Williams time-frequency image. Journal of Systems Engineering and Electronics, 2015, 26 (5): 973- 981.
doi: 10.1109/JSEE.2015.00106 |
18 |
LECUN Y, BENGIO Y, HINTO G Deep learning. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
19 |
O’SHEA T, HOYDIS J An introduction to deep learning for the physical layer. IEEE Trans. on Cognitive Communications and Networking, 2017, 3 (4): 563- 575.
doi: 10.1109/TCCN.2017.2758370 |
20 |
LAWRENCE S, GILES C L, TSOI A C, et al Face recognition: a convolutional neural network approach. IEEE Trans. on Neural Networks, 1997, 8 (1): 98- 113.
doi: 10.1109/72.554195 |
21 | LECUN Y, HUANG F J, BOTTOU L Learning methods for generic object recognition with invariance to pose and lighting. Proc. of the IEEE Computer Vision and Pattern Recognition, 2004, 2, 97- 104. |
22 | ABDEL-HAMID O, MOHAMED A R, JIANG H, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. Proc. of the IEEE International Conference on Acoustics, 2012: 4277−4280. |
23 |
ABDEL-HAMID O, MOHAMED A R, JIANG H, et al Convolutional neural networks for speech recognition. IEEE/ACM Trans. on Audio, Speech and Language Processing, 2014, 22 (10): 1533- 1545.
doi: 10.1109/TASLP.2014.2339736 |
24 | LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition. Proc. of the IEEE International Conference on Computer Vision, 2015: 1449−1457. |
25 |
NIU X X, SUEN C Y A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognition, 2012, 45 (4): 1318- 1325.
doi: 10.1016/j.patcog.2011.09.021 |
26 |
ZHAN M, DIAO M, GUO L M Convolutional neural networks for automatic cognitive radio waveform recognition. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191 |
27 | PACE P E. Detecting and classifying low probability of intercept radar. 3rd ed. New York: Artech House, 2009. |
28 | DENG B, WANG X, TAO R, et al Performance analysis of time delay estimation for linear frequency-modulated pulse based on fractional Fourier transform. Acta Armamentarii, 2012, 33 (6): 764- 768. |
29 |
ALMEIDA L B The fractional Fourier transform and time-frequency representation. IEEE Trans. on Signal Processing, 1994, 42 (11): 3084- 3091.
doi: 10.1109/78.330368 |
30 | LUNDEN J, TERHO L, KOIVUNEN V. Classifying pulse compression radar waveforms using time-frequency distributions. Proc. of the 39th Annual Conference on Information Sciences and Systems, 2005: 1−6. |
31 |
MONTAVON G, SAMEK M, MULLER K R Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 2018, 73, 1- 15.
doi: 10.1016/j.dsp.2017.10.011 |
32 | WANG Y C, HU Z Y, ZHANG Y F Digital modulated signal recognition based on spectral correlation and assembled neural network. Application Research of Computers, 2009, 26 (11): 4234- 4236. |
33 | WANG H J, NEIMULE M, JIN T. Application of adaptive genetic BP model in classification of speech characteristic signal. Proc. of the 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2018: 1429−1433. |
34 |
MILLER M F A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 1993, 6 (4): 525- 533.
doi: 10.1016/S0893-6080(05)80056-5 |
[1] | Meiyan PAN, Jun SUN, Yuhao YANG, Dasheng LI, Sudao XIE, Shengli WANG, Jianjun CHEN. Improved TQWT for marine moving target detection [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 470-481. |
[2] | Mussa Ally DIDA, Hao HUAN, Ran TAO, Teng WANG, Didar URYNBASSAROVA. Constant envelope FrFT OFDM: spectral and energy efficiency analysis [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 467-473. |
[3] | Shuyi Jia, Guohong Wang, and Shuncheng Tan. Radial acceleration estimation of multiple high maneuvering targets [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 183-193. |
[4] | Rong Chen and Yiming Wang. Universal FRFT-based algorithm for parameter estimation of chirp signals [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 495-501. |
[5] | Yuan Ye & Mei Wenbo. Digital modulation classification using multi-layer perceptron and time-frequency features [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 249-254. |
[6] | Ma Shiwei, Zhu Xiaojin, Chen Guanghua, Wang Jian & Cao Jialin. Parametric adaptive time-frequency representation based on time-sheared Gabor atoms [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||