1 |
DING L F, GENG G F. Radar principle. Xi’an: Xidian University Press, 2002. (in Chinese)
|
2 |
XUE J, XU S W, LIU J, et al Model for non-Gaussian sea clutter amplitudes using generalized inverse Gaussian texture. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (6): 892- 896.
doi: 10.1109/LGRS.2018.2886782
|
3 |
HE Y, HUANG Y, GUAN J, et al. An overview on radar target detection in sea clutter. Modern Radar, 2014, 36(12): 6−14. (in Chinese)
|
4 |
LI Q Q. Radar target detection and performance evaluation in sea clutter. Xi’an: Xidian University, 2014. (in Chinese)
|
5 |
XUE J, XU S W, SHUI P L Near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with inverse Gaussian texture. Signal Processing, 2020, 166, 107236.
doi: 10.1016/j.sigpro.2019.07.029
|
6 |
SAMUEL J D, MARK G R, BRAIN C. A comparison of detection performance for several track-before-detect algorithms. Eurasip Journal on Advances in Signal Processing, 2008. DOI: 10.1155/2008/428036.
|
7 |
XUE J, XU S W, SHUI P L Improved track-before-detect method for detecting range-spread targets in generalized Pareto clutter. Science China-Information Sciences, 2019, 62, 40304.
doi: 10.1007/s11432-018-9744-2
|
8 |
DING H, DONG Y L, LIU N B, et al Overview and prospects of research on sea clutter property cognition. Journal of Radars, 2016, 5 (5): 499- 516.
doi: 10.12000/JR16069
|
9 |
XU S W, SHI X Y, XUE J, et al Adaptive subspace detection of range-spread target in compound Gaussian clutter with inverse Gaussian texture. Digital Signal Processing, 2018, 81, 79- 89.
doi: 10.1016/j.dsp.2018.07.002
|
10 |
WU S J, MEI X C Radar signal processing and data processing technology. Beijing: Publishing House of Electronic Industry, 2007.
|
11 |
LONG J, SHELHAMER E, DARRELL T Fully convolutional networks for semantic segmentation. Proc. of the 28th IEEE Conference on Computer Vision and Pattern Recognition, 2015, 3431- 3440.
|
12 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks, in Proceedings of the 25th Int Conf on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1097-1105.
|
13 |
REN S Q, HE K M, GIRSHICK R, et al Faster RCNN: towards real-time object detection with region proposal networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 39 (6): 1137- 1149.
|
14 |
NOH H, HONG S, HAN B Learning deconvolution network for semantic segmentation. Proc. of the 15th IEEE International Conference on Computer Vision, 2015, 1520- 1528.
|
15 |
SZARVAS M, YOSHIZAWA A, YAMAMOTO M Multi-view face detection using deep convolutional neural networks. Proc. of the 5th ACM on International Conference on Multimedia Retrieval, 2015, 643- 650.
|
16 |
HUANG L C, YANG Y, DENG Y F, et al. Dense Box: unifying landmark localization with end to end object detection. arXiv, 2016: 1509.04874.
|
17 |
DAI J F, HE K M, SUN J. Instance-aware semantic segmentation via multi-task network cascades, in Proceedings of the 29th IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 3150-3158.
|
18 |
WANG H Q, JIANG B, LI X, et al The method of target detection based on ameliorated SVM in the presence of sea clutter. Signal Processing, 2007, 23 (4): 598- 602.
|
19 |
DURKIN J, CAI J F, CAI Z X Decision tree technique and its current research. Control Engineering of China, 2005, 12 (1): 15- 18.
|
20 |
SONG C Y. Hyperspectral remote sensing image processing system based on fully convolutional network. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese)
|
21 |
MATTHEW D Z, DILIP K, GRAHAM W T, et al. Deconvolutional networks. Proc. of the IEEE Conference on Compute Vision Pattern Recognition, 2010: 2528−2535.
|
22 |
ROBBINS H, MONRO S. A stochastic approximation method. New York: Springer, 1951.
|
23 |
DUCHI J, HAZAN E, SINGER Y Adaptive sub-gradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2011, 12 (7): 2121- 2159.
|
24 |
ZEILER M D. ADADELTA: an adaptive learning rate method. http://arXiv.org/pdf/1212.5701.pdf.
|
25 |
HINTON G Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. Neural Networks for Machine Learning, 2012, 4 (2): 26- 31.
|
26 |
KINGMA D P, BA J A. A method for stochastic optimization. http://arXiv.org/pdf/1412.6980.pdf.
|
27 |
RUDER S. An overview of gradient descent optimization algorithms. http://arXiv.org/pdf1412.6980/.pdf.
|